33 research outputs found

    Biomolecular imaging and electronic damage using X-ray free-electron lasers

    Full text link
    Proposals to determine biomolecular structures from diffraction experiments using femtosecond X-ray free-electron laser (XFEL) pulses involve a conflict between the incident brightness required to achieve diffraction-limited atomic resolution and the electronic and structural damage induced by the illumination. Here we show that previous estimates of the conditions under which biomolecular structures may be obtained in this manner are unduly restrictive, because they are based on a coherent diffraction model that is not appropriate to the proposed interaction conditions. A more detailed imaging model derived from optical coherence theory and quantum electrodynamics is shown to be far more tolerant of electronic damage. The nuclear density is employed as the principal descriptor of molecular structure. The foundations of the approach may also be used to characterize electrodynamical processes by performing scattering experiments on complex molecules of known structure.Comment: 16 pages, 2 figure

    Coherent methods in the X-ray sciences

    Full text link
    X-ray sources are developing rapidly and their coherent output is growing extremely rapidly. The increased coherent flux from modern X-ray sources is being matched with an associated rapid development in experimental methods. This article reviews the literature describing the ideas that utilise the increased brilliance from modern X-ray sources. It explores how ideas in coherent X-ray science are leading to developments in other areas, and vice versa. The article describes measurements of coherence properties and uses this discussion as a base from which to describe partially-coherent diffraction and X-ray phase contrast imaging, with its applications in materials science, engineering and medicine. Coherent diffraction imaging methods are reviewed along with associated experiments in materials science. Proposals for experiments to be performed with the new X-ray free-electron-lasers are briefly discussed. The literature on X-ray photon correlation spectroscopy is described and the features it has in common with other coherent X-ray methods are identified. Many of the ideas used in the coherent X-ray literature have their origins in the optical and electron communities and these connections are explored. A review of the areas in which ideas from coherent X-ray methods are contributing to methods for the neutron, electron and optical communities is presented.Comment: A review articel accepted by Advances in Physics. 158 pages, 29 figures, 3 table

    The Soft X-ray Free-Electron Laser FLASH at DESY

    No full text
    FLASH, the Free-electron LASer in Hamburg, is the world’s first free electron laser for extremely bright and ultra-short pulses in the extreme ultraviolet and soft X-ray range. Efficient photon beam transport and diagnostics play an essential role in exploiting the features of this new generation of light sources in a large variety of user experiments. A detailed overview of the FLASH user facility is presented

    FLASH microscopy

    No full text

    Ultrafast single-shot diffraction imaging of nanoscale dynamics

    No full text
    The transient nanoscale dynamics of materials on femtosecond to picosecond timescales is of great interest in the study of condensed phase dynamics such as crack formation, phase separation and nucleation, and rapid fluctuations in the liquid state or in biologically relevant environments. The ability to take images in a single shot is the key to studying non-repetitive behaviour mechanisms, a capability that is of great importance in many of these problems. Using coherent diffraction imaging with femtosecond X-ray free-electron-laser pulses we capture time-series snapshots of a solid as it evolves on the ultrafast timescale. Artificial structures imprinted on a Si 3 N 4 window are excited with an optical laser and undergo laser ablation, which is imaged with a spatial resolution of 50nm and a temporal resolution of 10ps. By using the shortest available free-electron-laser wavelengths and proven synchronization methods this technique could be extended to spatial resolutions of a few nanometres and temporal resolutions of a few tens of femtoseconds. This experiment opens the door to a new regime of time-resolved experiments in mesoscopic dynamics. © 2008 Macmillan Publishers Limited. All rights reserved
    corecore