research

Local entanglement and confinement transitions in the random transverse-field Ising model on the pyrochlore lattice

Abstract

We use numerical linked cluster expansions (NLC) and exact diagonalization to study confinement transitions out of the quantum spin liquid phase in the pyrochlore-lattice Ising antiferromagnet with random transverse fields. We calculate entanglement entropies associated with local regions defined by single tetrahedron to observe these transitions. The randomness-induced confinement transition is marked by a sharp reduction in the local entanglement and a concomitant increase in Ising correlations. In NLC, it is studied through the destruction of loop resonances due to random transverse-fields. The confining phase is characterized by a distribution of local entanglement entropies, which persists to large random fields

    Similar works