529 research outputs found

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    Nipah Virus Transmission in a Hamster Model

    Get PDF
    Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks

    Current treatment options for recurrent nasopharyngeal cancer

    Get PDF
    Loco-regional control rate of nasopharyngeal carcinoma (NPC) has improved significantly in the past decade. However, local recurrence still represents a major cause of mortality and morbidity in advanced stages, and management of local failure remains a challenging issue in NPC. The best salvage treatment for local recurrent NPC remains to be determined. The options include brachytherapy, external radiotherapy, stereotactic radiosurgery, and nasopharyngectomy, either alone or in different combinations. In this article we will discuss the different options for salvage of locally recurrent NPC. Retreatment of locally recurrent NPC using radiotherapy, alone or in combination with other treatment modalities, as well as surgery, can result in long-term local control and survival in a substantial proportion of patients. For small-volume recurrent tumors (T1–T2) treated with external radiotherapy, brachytherapy or stereotactic radiosurgery, comparable results to those obtained with surgery have been reported. In contrast, treatment results of advanced-stage locally recurrent NPC are generally more satisfactory with surgery (with or without postoperative radiotherapy) than with reirradiation

    Computers from plants we never made. Speculations

    Full text link
    We discuss possible designs and prototypes of computing systems that could be based on morphological development of roots, interaction of roots, and analog electrical computation with plants, and plant-derived electronic components. In morphological plant processors data are represented by initial configuration of roots and configurations of sources of attractants and repellents; results of computation are represented by topology of the roots' network. Computation is implemented by the roots following gradients of attractants and repellents, as well as interacting with each other. Problems solvable by plant roots, in principle, include shortest-path, minimum spanning tree, Voronoi diagram, α\alpha-shapes, convex subdivision of concave polygons. Electrical properties of plants can be modified by loading the plants with functional nanoparticles or coating parts of plants of conductive polymers. Thus, we are in position to make living variable resistors, capacitors, operational amplifiers, multipliers, potentiometers and fixed-function generators. The electrically modified plants can implement summation, integration with respect to time, inversion, multiplication, exponentiation, logarithm, division. Mathematical and engineering problems to be solved can be represented in plant root networks of resistive or reaction elements. Developments in plant-based computing architectures will trigger emergence of a unique community of biologists, electronic engineering and computer scientists working together to produce living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing inspired by physics, chemistry and biology. Essays presented to Julian Miller on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew Adamatzky (Springer, 2017

    Functional polymorphisms in the BRCA1 promoter influence transcription and are associated with decreased risk for breast cancer in Chinese women

    Get PDF
    Background: The BRCA1 gene is an important breast-cancer susceptibility gene. Promoter polymorphisms can alter the binding affinity of transcription factors, changing transcriptional activity and may affect susceptibility to disease. Methods and Results: Using direct sequencing of the BRCA1 promoter region, we identified four polymorphisms c.-2804T→C (rs799908:T→C), c.-2265C→T (rs11655505:C→T), c.-2004A→G (rs799906:A→G) and c.-1896(ACA) 1→(ACA) 2 (rs8176071:(ACA) 1→(ACA) 2) present in Hong Kong Chinese. Each polymorphism was studied independently and in combination by functional assays. Although all four variants significantly altered promoter activity, the c.-2265T allele had stronger binding than the C allele, and the most common mutant haplotype, which contains the c.-2265T allele, increased promoter activity by 70%. Risk association first tested in Hong Kong Chinese women with breast cancer and age-matched controls and replicated in a large population-based study of Shanghai Chinese, together totalling >3000 participants, showed that carriers of the c.-2265T allele had a reduced risk for breast cancer (combined odd ratio (OR) = 0.80, 95% Cl 0.69 to 0.93; p = 0.003) which was more evident among women aged ≥45 years at first diagnosis of breast cancer and without a family history of breast cancer (combined OR = 0.75, 95% Cl 0.61 to 0.91; p = 0.004). The most common haplotype containing the c.-2265T allele also showed significant risk association for women aged ≥45 years without a family history of breast cancer (OR = 0.64, 95% Cl 0.46 to 0.89; p = 0.008). Conclusion: This comprehensive study of BRCA1 promoter polymorphisms found four variants that altered promoter activity and with the most significant contribution from c.-2265C→T, which could affect susceptibility to breast cancer in the Chinese population. Its significance in other populations remains to be investigated.published_or_final_versio

    Psychometric performance of the CAMPHOR and SF-36 in pulmonary hypertension

    Get PDF
    BACKGROUND: The Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) and the Medical Outcomes Study Short Form 36 (SF-36) are widely used to assess patient-reported outcome in individuals with pulmonary hypertension (PH). The aim of the study was to compare the psychometric properties of the two measures. METHODS: Participants were recruited from specialist PH centres in Australia and New Zealand. Participants completed the CAMPHOR and SF-36 at two time points two weeks apart. The SF-36 is a generic health status questionnaire consisting of 36 items split into 8 sections. The CAMPHOR is a PH-specific measure consisting of 3 scales; symptoms, activity limitations and needs-based QoL. The questionnaires were assessed for distributional properties (floor and ceiling effects), internal consistency (Cronbach's alpha), test-retest reliability and construct validity (scores by World Health Organisation functional classification). RESULTS: The sample comprised 65 participants (mean (SD) age = 57.2 (14.5) years; n(%) male = 14 (21.5%)). Most of the patients were in WHO class 2 (27.7%) and 3 (61.5%). High ceiling effects were observed for the SF-36 bodily pain, social functioning and role emotional domains. Test-retest reliability was poor for six of the eight SF-36 domains, indicating high levels of random measurement error. Three of the SF-36 domains did not distinguish between WHO classes. In contrast, all CAMPHOR scales exhibited good distributional properties, test retest reliability and distinguished between WHO functional classes. CONCLUSIONS: The CAMPHOR exhibited superior psychometric properties, compared with the SF-36, in the assessment of PH patient-reported outcome

    Development of an Acute and Highly Pathogenic Nonhuman Primate Model of Nipah Virus Infection

    Get PDF
    Nipah virus (NiV) is an enigmatic emerging pathogen that causes severe and often fatal neurologic and/or respiratory disease in both animals and humans. Amongst people, case fatality rates range between 40 and 75 percent and there are no vaccines or treatments approved for human use. Guinea pigs, hamsters, cats, ferrets, pigs and most recently squirrel monkeys (New World monkey) have been evaluated as animal models of human NiV infection, and with the exception of the ferret, no model recapitulates all aspects of NiV-mediated disease seen in humans. To identify a more viable nonhuman primate (NHP) model, we examined the pathogenesis of NiV in African green monkeys (AGM). Exposure of eight monkeys to NiV produced a severe systemic infection in all eight animals with seven of the animals succumbing to infection. Viral RNA was detected in the plasma of challenged animals and occurred in two of three subjects as a peak between days 7 and 21, providing the first clear demonstration of plasma-associated viremia in NiV experimentally infected animals and suggested a progressive infection that seeded multiple organs simultaneously from the initial site of virus replication. Unlike the cat, hamster and squirrel monkey models of NiV infection, severe respiratory pathology, neurological disease and generalized vasculitis all manifested in NiV-infected AGMs, providing an accurate reflection of what is observed in NiV-infected humans. Our findings demonstrate the first consistent and highly pathogenic NHP model of NiV infection, providing a new and critical platform in the evaluation and licensure of either passive and active immunization or therapeutic strategies for human use

    Nipah Virus Infects Specific Subsets of Porcine Peripheral Blood Mononuclear Cells

    Get PDF
    Nipah virus (NiV), a zoonotic paramyxovirus, is highly contagious in swine, and can cause fatal infections in humans following transmission from the swine host. The main viral targets in both species are the respiratory and central nervous systems, with viremia implicated as a mode of dissemination of NiV throughout the host. The presented work focused on the role of peripheral blood mononuclear cells (PBMC) in the viremic spread of the virus in the swine host. B lymphocytes, CD4−CD8−, as well as CD4+CD8− T lymphocytes were not permissive to NiV, and expansion of the CD4+CD8− cells early post infection was consistent with functional humoral response to NiV infection observed in swine. In contrast, significant drop in the CD4+CD8− T cell frequency was observed in piglets which succumbed to the experimental infection, supporting the hypothesis that antibody development is the critical component of the protective immune response. Productive viral replication was detected in monocytes, CD6+CD8+ T lymphocytes and NK cells by recovery of infectious virus in the cell supernatants. Virus replication was supported by detection of the structural N and the non-structural C proteins or by detection of genomic RNA increase in the infected cells. Infection of T cells carrying CD6 marker, a strong ligand for the activated leukocyte cell adhesion molecule ALCAM (CD166) highly expressed on the microvascular endothelial cell of the blood-air and the blood-brain barrier may explain NiV preferential tropism for small blood vessels of the lung and brain

    Interferon Production and Signaling Pathways Are Antagonized during Henipavirus Infection of Fruit Bat Cell Lines

    Get PDF
    Bats are natural reservoirs for a spectrum of infectious zoonotic diseases including the recently emerged henipaviruses (Hendra and Nipah viruses). Henipaviruses have been observed both naturally and experimentally to cause serious and often fatal disease in many different mammal species, including humans. Interestingly, infection of the flying fox with henipaviruses occurs in the absence of clinical disease. The extreme variation in the disease pattern between humans and bats has led to an investigation into the effects of henipavirus infection on the innate immune response in bat cell lines. We report that henipavirus infection does not result in the induction of interferon expression, and the viruses also inhibit interferon signaling. We also confirm that the interferon production and signaling block in bat cells is not due to differing viral protein expression levels between human and bat hosts. This information, in addition to the known lack of clinical signs in bats following henipavirus infection, suggests that bats control henipavirus infection by an as yet unidentified mechanism, not via the interferon response. This is the first report of henipavirus infection in bat cells specifically investigating aspects of the innate immune system
    corecore