21 research outputs found

    Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity

    Get PDF
    The antioxidant activity of flavonoids is believed to increase when they are coordinated with transition metal ions. However, the literature on this subject is contradictory and the outcome seems to largely depend on the experimental conditions. In order to understand the contribution of the metal coordination and the type of interaction between a flavonoid and the metal ion, in this study a new metal complex of Cu (II) with naringin was synthesized and characterized by FT-IR, UV-VIS, mass spectrometry (ESI-MS/MS), elemental analysis and H-1-NMR. The results of these analyses indicate that the complex has a Cu (II) ion coordinated via positions 4 and 5 of the flavonoid. The antioxidant, anti-inflammatory and antimicrobial activities of this complex were studied and compared with the activity of free naringin. The Naringin-Cu. (H) complex 1 showed higher antioxidant, anti-inflammatory and tumor cell cytoxicity activities than free naringin without reducing cell viability.1271352136

    DNA Methods to Identify Missing Persons

    Full text link
    Human identification by DNA analysis in missing person cases typically involves comparison of two categories of sample: a reference sample, which could be obtained from intimate items of the person in question or from family members, and the questioned sample from the unknown person-usually derived from the bones, teeth, or soft tissues of human remains. Exceptions include the analysis of archived tissues, such as those held by hospital pathology departments, and the analysis of samples relating to missing, but living persons. DNA is extracted from the questioned and reference samples and well-characterized regions of the genetic code are amplified from each source using the Polymerase Chain Reaction (PCR), which generates sufficient copies of the target region for visualization and comparison of the genetic sequences obtained from each sample. If the DNA sequences of the questioned and reference samples differ, this is normally sufficient for the questioned DNA to be excluded as having come from the same source. If the sequences are identical, statistical analysis is necessary to determine the probability that the match is a consequence of the questioned sequence coming from the same individual who provided the reference sample or from a randomly occurring individual in the general population. Match probabilities that are currently achievable are frequently greater than 1 in 1 billion, allowing identity to be assigned with considerable confidence in many cases

    Pollymorphisms in the CBS Gene and Homocysteine, Folate and Vitamin B-12 Levels: Association With Polymorphisms in the MTHFR and MTRR Genes in Brazilian Children

    No full text
    Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) and cystathionine P-synthase (CBS) genes, involved in the intracellular metabolism of homocysteine (Hcy), can result in hyperhomocysteinemia. The objective of this study was to evaluate prevalence estimates of CBS T833C, G919A and the insertion of 68-bp (844ins68) polymorphisms and their correlation with Hcy, folate and 131, in 220 children previously genotyped for MTHFR C677T, A1298C, and MTRR A66G. The prevalence of heterozygote children for 844ins68 was 19.5%. The T833C CBS mutation was identified in association with 844ins68 in all the carriers of the insertion. Genotyping for CBS G919A mutation showed that all the children presented the GG genotype. Analysis of Hcy, B-12 and folate, according to the combination of the different genotypes of the C677T and A1298C MTHFR, A66G MTRR, and 844ins68 CBS showed that the 677TT/1298AA/68WW genotype is associated with an increase in Hcy, when compared to the 677CC/1298AC/68WW (P = 0.033) and the 677CT/1298AA/68WW genotypes (P = 0.034). Since B-12 and folate were not different between these groups, a genetic interaction between diverse polymorphisms probably influences Hcy. Our results emphasize the role of genetic interactions in Hcy levels. (C) 2008 Wiley-Liss, Inc.146A2025982602FAEPEX-UNI-CAM

    Polymorphisms in the methylenetetrahydrofolate reductase and methionine synthase reductase genes and homocysteine levels in Brazilian children

    No full text
    Hyperhomocysteinemia is a risk factor for thrombosis, and methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisins, folate, and B-12 levels could contribute to plasma homocysteine (Hey) variation. Although well established in adults, few studies have been performed in childhood. In this study, we investigated association of polymorphisms C677T and A1298C in the MTHFR gene and A66G in the MTRR gene with Hey levels in children. These polymorphisms, as well as Hey, folate, and vitamin B12 levels were investigated in 220 normal children with ages ranging from 1 to 8 years. Plasma Hey, folate, and vitamin B12 levels were normal in all children. None of the polymorphisins could be considered an independent risk factor for hyperhomocysteinemia during childhood. The median Hey levels in 37 children (17%) doubly heterozygous for C677T and A1298C mutations in the MTHFR gene were not different from the other genotypes. However, the association of the different genotypes with Hey, folate, and vitamin B12 levels demonstrated significant P-values. The folate levels demonstrated a statistically significant decrease (P = 0.0477) from the C677T mutation in the MTHFR gene (TT genotype) when compared to the other groups. Folate was the only independent risk factor for hyperhomocysteinemia. Thus, monitoring the concentrations of folate would be more helpful for evaluating hyperhomocysteinemia and for preventing cardiovascular disease. (C) 2004 Wiley-Liss, Inc.128A325626
    corecore