2,965 research outputs found
Recommended from our members
Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process
All solid-state batteries (ASSBs) have the potential to deliver higher energy densities, wider operating temperature range, and improved safety compared with today's liquid-electrolyte-based batteries. However, of the various solid-state electrolyte (SSE) classes - polymers, sulfides, or oxides - none alone can deliver the combined properties of ionic conductivity, mechanical, and chemical stability needed to address scalability and commercialization challenges. While promising strategies to overcome these include the use of polymer/oxide or sulfide composites, there is still a lack of fundamental understanding between different SSE-polymer-solvent systems and its selection criteria. Here, we isolate various SSE-polymer-solvent systems and study their molecular level interactions by combining various characterization tools. With these findings, we introduce a suitable Li7P3S11SSE-SEBS polymer-xylene solvent combination that significantly reduces SSE thickness (∼50 μm). The SSE-polymer composite displays high room temperature conductivity (0.7 mS cm-1) and good stability with lithium metal by plating and stripping over 2000 h at 1.1 mAh cm-2. This study suggests the importance of understanding fundamental SSE-polymer-solvent interactions and provides a design strategy for scalable production of ASSBs
Back reaction, emission spectrum and entropy spectroscopy
Recently, an interesting work, which reformulates the tunneling framework to
directly produce the Hawking emission spectrum and entropy spectroscopy in the
tunneling picture, has been received a broad attention. However, during the
emission process, most related observations have not incorporated the effects
of back reaction on the background spacetime, whose derivations are therefore
not the desiring results for the real physical process. With this point as a
central motivation, in this paper we suitably adapt the \emph{reformulated}
tunneling framework so that it can well accommodate the effects of back
reaction to produce the Hawking emission spectrum and entropy spectroscopy.
Consequently, we interestingly find that, when back reaction is considered, the
Parikh-Wilczek's outstanding observations that, an isolated radiating black
hole has an unitary-evolving emission spectrum that is \emph{not} precisely
thermal, but is related to the change of the Bekenstein-Hawking entropy, can
also be reproduced in the reformulated tunneling framework, meanwhile the
entropy spectrum has the same form as that without inclusion of back reaction,
which demonstrates the entropy quantum is \emph{independent} of the effects of
back reaction. As our final analysis, we concentrate on the issues of the black
hole information, but \emph{unfortunately} find that, even including the
effects of back reaction and higher-order quantum corrections, such tunneling
formalism can still not provide a mechanism for preserving the black hole
information.Comment: 16 pages, no figure, use JHEP3.cls. to be published in JHE
Self Injection length in La0.7 Ca0.3 Mno3-YBa 2Cu3O7-d ferromagnet- superconductor multi layer thin films
We have carried out extensive studies on the self-injection problem in
barrierless heterojunctions between La0.7Ca0.3MnO3 (LCMO) and YBa2Cu3O7-d
(YBCO). The heterojunctions were grown in situ by sequentially growing LCMO and
YBCO films on LaAlO3 (LAO) substrate using a pulsed laser deposition
(PLD) system. YBCO micro-bridges with 64 microns width were patterned both on
the LAO (control) and LCMO side of the substrate. Critical current, Ic, was
measured at 77K on both the control side as well as the LCMO side for different
YBCO film thickness. It was observed that while the control side showed a Jc of
~2 x 10E6 A/ cm2 the LCMO side showed about half the value for the same
thickness (1800 A). The difference in Jc indicates that a certain thickness of
YBCO has become 'effectively' normal due to self-injection. From the
measurement of Jc at two different thickness' (1800 A and 1500 A) of YBCO both
on the LAO as well as the LCMO side, the value of self-injection length (at
77K) was estimated to be ~900 A self-injection length has been quantified. A
control experiment carried out with LaNiO3 deposited by PLD on YBCO did not
show any evidence of self-injection.Comment: 6 pages, one figure in .ps forma
Quantum corrections and black hole spectroscopy
In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully
reproduced in the tunneling picture. As a result, the derived entropy spectrum
of black hole in different gravity (including Einstein's gravity,
Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly
spaced, sharing the same forms as , where physical process is only
confined in the semiclassical framework. However, the real physical picture
should go beyond the semiclassical approximation. In this case, the physical
quantities would undergo higher-order quantum corrections, whose effect on
different gravity shares in different forms. Motivated by these facts, in this
paper we aim to observe how quantum corrections affect black hole spectroscopy
in different gravity. The result shows that, in the presence of higher-order
quantum corrections, black hole spectroscopy in different gravity still shares
the same form as , further confirming the entropy quantum is universal
in the sense that it is not only independent of black hole parameters, but also
independent of higher-order quantum corrections. This is a desiring result for
the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE
Back reaction, covariant anomaly and effective action
In the presence of back reaction, we first produce the one-loop corrections
for the event horizon and Hawking temperature of the Reissner-Nordstr\"om black
hole. Then, based on the covariant anomaly cancelation method and the effective
action technique, the modified expressions for the fluxes of gauge current and
energy momentum tensor, due to the effect of back reaction, are obtained. The
results are consistent with the Hawking fluxes of a (1+1)-dimensional blackbody
at the temperature with quantum corrections, thus confirming the robustness of
the covariant anomaly cancelation method and the effective action technique for
black holes with back reaction.Comment: 17 page
Back reaction effects on the dynamics of heavy probes in heavy quark cloud
We holographically study the effect of back reaction on the hydrodynamical
properties of strongly coupled super Yang-Mills (SYM) thermal
plasma. The back reaction we consider arises from the presence of static heavy
quarks uniformly distributed over SYM plasma. In order to
study the hydrodynamical properties, we use heavy quark as well as heavy
quark-antiquark bound state as probes and compute the jet quenching parameter,
screening length and binding energy. We also consider the rotational dynamics
of heavy probe quark in the back-reacted plasma and analyse associated energy
loss. We observe that the presence of back reaction enhances the energy-loss in
the thermal plasma. Finally, we show that there is no effect of angular drag on
the rotational motion of quark-antiquark bound state probing the back reacted
thermal plasma.Comment: 29 pages, 21 figure
The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.
The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere
Ethnic inequalities and pathways to care in psychosis in England: a systematic review and meta-analysis
© The Author(s). 2018Background: As part of a national programme to tackle ethnic inequalities, we conducted a systematic review and meta-analysis of research on ethnic inequalities in pathways to care for adults with psychosis living in England and/or Wales. Methods: Nine databases were searched from inception to 03.07.17 for previous systematic reviews, including forward and backward citation tracking and a PROSPERO search to identify ongoing reviews. We then carried forward relevant primary studies from included reviews (with the latest meta-analyses reporting on research up to 2012), supplemented by a search on 18.10.17 in MEDLINE, Embase, PsycINFO and CINAHL for primary studies between 2012 and 2017 that had not been covered by previous meta-analyses. Results: Forty studies, all conducted in England, were included for our updated meta-analyses on pathways to care. Relative to the White reference group, elevated rates of civil detentions were found for Black Caribbean (OR = 3.43, 95% CI = 2.68 to 4.40, n = 18), Black African (OR = 3.11, 95% CI = 2.40 to 4.02, n = 6), and South Asian patients (OR = 1.50, 95% CI 1.07 to 2.12, n = 10). Analyses of each Mental Health Act section revealed significantly higher rates for Black people under (civil) Section 2 (OR = 1.53, 95% CI = 1.11 to 2.11, n = 3). Rates in repeat admissions were significantly higher than in first admission for South Asian patients (between-group difference p < 0.01). Some ethnic groups had more police contact (Black African OR = 3.60, 95% CI = 2.15 to 6.05, n = 2; Black Caribbean OR = 2.64, 95% CI = 1.88 to 3.72, n = 8) and criminal justice system involvement (Black Caribbean OR = 2.76, 95% CI = 2.02 to 3.78, n = 5; Black African OR = 1.92, 95% CI = 1.32 to 2.78, n = 3). The White Other patients also showed greater police and criminal justice system involvement than White British patients (OR = 1.49, 95% CI = 1.03 to 2.15, n = 4). General practitioner involvement was less likely for Black than the White reference group. No significant variations over time were found across all the main outcomes. Conclusions: Our updated meta-analyses reveal persisting but not significantly worsening patterns of ethnic inequalities in pathways to psychiatric care, particularly affecting Black groups. This provides a comprehensive evidence base from which to inform policy and practice amidst a prospective Mental Health Act reform. Trial registration: CRD42017071663Peer reviewedFinal Published versio
Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.
Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
- …
