2,965 research outputs found

    Back reaction, emission spectrum and entropy spectroscopy

    Full text link
    Recently, an interesting work, which reformulates the tunneling framework to directly produce the Hawking emission spectrum and entropy spectroscopy in the tunneling picture, has been received a broad attention. However, during the emission process, most related observations have not incorporated the effects of back reaction on the background spacetime, whose derivations are therefore not the desiring results for the real physical process. With this point as a central motivation, in this paper we suitably adapt the \emph{reformulated} tunneling framework so that it can well accommodate the effects of back reaction to produce the Hawking emission spectrum and entropy spectroscopy. Consequently, we interestingly find that, when back reaction is considered, the Parikh-Wilczek's outstanding observations that, an isolated radiating black hole has an unitary-evolving emission spectrum that is \emph{not} precisely thermal, but is related to the change of the Bekenstein-Hawking entropy, can also be reproduced in the reformulated tunneling framework, meanwhile the entropy spectrum has the same form as that without inclusion of back reaction, which demonstrates the entropy quantum is \emph{independent} of the effects of back reaction. As our final analysis, we concentrate on the issues of the black hole information, but \emph{unfortunately} find that, even including the effects of back reaction and higher-order quantum corrections, such tunneling formalism can still not provide a mechanism for preserving the black hole information.Comment: 16 pages, no figure, use JHEP3.cls. to be published in JHE

    Self Injection length in La0.7 Ca0.3 Mno3-YBa 2Cu3O7-d ferromagnet- superconductor multi layer thin films

    Get PDF
    We have carried out extensive studies on the self-injection problem in barrierless heterojunctions between La0.7Ca0.3MnO3 (LCMO) and YBa2Cu3O7-d (YBCO). The heterojunctions were grown in situ by sequentially growing LCMO and YBCO films on LaAlO3 (LAO) substrate using a pulsed laser deposition (PLD) system. YBCO micro-bridges with 64 microns width were patterned both on the LAO (control) and LCMO side of the substrate. Critical current, Ic, was measured at 77K on both the control side as well as the LCMO side for different YBCO film thickness. It was observed that while the control side showed a Jc of ~2 x 10E6 A/ cm2 the LCMO side showed about half the value for the same thickness (1800 A). The difference in Jc indicates that a certain thickness of YBCO has become 'effectively' normal due to self-injection. From the measurement of Jc at two different thickness' (1800 A and 1500 A) of YBCO both on the LAO as well as the LCMO side, the value of self-injection length (at 77K) was estimated to be ~900 A self-injection length has been quantified. A control experiment carried out with LaNiO3 deposited by PLD on YBCO did not show any evidence of self-injection.Comment: 6 pages, one figure in .ps forma

    Quantum corrections and black hole spectroscopy

    Full text link
    In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully reproduced in the tunneling picture. As a result, the derived entropy spectrum of black hole in different gravity (including Einstein's gravity, Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly spaced, sharing the same forms as Sn=nS_n=n, where physical process is only confined in the semiclassical framework. However, the real physical picture should go beyond the semiclassical approximation. In this case, the physical quantities would undergo higher-order quantum corrections, whose effect on different gravity shares in different forms. Motivated by these facts, in this paper we aim to observe how quantum corrections affect black hole spectroscopy in different gravity. The result shows that, in the presence of higher-order quantum corrections, black hole spectroscopy in different gravity still shares the same form as Sn=nS_n=n, further confirming the entropy quantum is universal in the sense that it is not only independent of black hole parameters, but also independent of higher-order quantum corrections. This is a desiring result for the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE

    Back reaction, covariant anomaly and effective action

    Full text link
    In the presence of back reaction, we first produce the one-loop corrections for the event horizon and Hawking temperature of the Reissner-Nordstr\"om black hole. Then, based on the covariant anomaly cancelation method and the effective action technique, the modified expressions for the fluxes of gauge current and energy momentum tensor, due to the effect of back reaction, are obtained. The results are consistent with the Hawking fluxes of a (1+1)-dimensional blackbody at the temperature with quantum corrections, thus confirming the robustness of the covariant anomaly cancelation method and the effective action technique for black holes with back reaction.Comment: 17 page

    Back reaction effects on the dynamics of heavy probes in heavy quark cloud

    Get PDF
    We holographically study the effect of back reaction on the hydrodynamical properties of N=4\mathcal{N} = 4 strongly coupled super Yang-Mills (SYM) thermal plasma. The back reaction we consider arises from the presence of static heavy quarks uniformly distributed over N=4\mathcal{N} = 4 SYM plasma. In order to study the hydrodynamical properties, we use heavy quark as well as heavy quark-antiquark bound state as probes and compute the jet quenching parameter, screening length and binding energy. We also consider the rotational dynamics of heavy probe quark in the back-reacted plasma and analyse associated energy loss. We observe that the presence of back reaction enhances the energy-loss in the thermal plasma. Finally, we show that there is no effect of angular drag on the rotational motion of quark-antiquark bound state probing the back reacted thermal plasma.Comment: 29 pages, 21 figure

    The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.

    Get PDF
    The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere

    Ethnic inequalities and pathways to care in psychosis in England: a systematic review and meta-analysis

    Get PDF
    © The Author(s). 2018Background: As part of a national programme to tackle ethnic inequalities, we conducted a systematic review and meta-analysis of research on ethnic inequalities in pathways to care for adults with psychosis living in England and/or Wales. Methods: Nine databases were searched from inception to 03.07.17 for previous systematic reviews, including forward and backward citation tracking and a PROSPERO search to identify ongoing reviews. We then carried forward relevant primary studies from included reviews (with the latest meta-analyses reporting on research up to 2012), supplemented by a search on 18.10.17 in MEDLINE, Embase, PsycINFO and CINAHL for primary studies between 2012 and 2017 that had not been covered by previous meta-analyses. Results: Forty studies, all conducted in England, were included for our updated meta-analyses on pathways to care. Relative to the White reference group, elevated rates of civil detentions were found for Black Caribbean (OR = 3.43, 95% CI = 2.68 to 4.40, n = 18), Black African (OR = 3.11, 95% CI = 2.40 to 4.02, n = 6), and South Asian patients (OR = 1.50, 95% CI 1.07 to 2.12, n = 10). Analyses of each Mental Health Act section revealed significantly higher rates for Black people under (civil) Section 2 (OR = 1.53, 95% CI = 1.11 to 2.11, n = 3). Rates in repeat admissions were significantly higher than in first admission for South Asian patients (between-group difference p < 0.01). Some ethnic groups had more police contact (Black African OR = 3.60, 95% CI = 2.15 to 6.05, n = 2; Black Caribbean OR = 2.64, 95% CI = 1.88 to 3.72, n = 8) and criminal justice system involvement (Black Caribbean OR = 2.76, 95% CI = 2.02 to 3.78, n = 5; Black African OR = 1.92, 95% CI = 1.32 to 2.78, n = 3). The White Other patients also showed greater police and criminal justice system involvement than White British patients (OR = 1.49, 95% CI = 1.03 to 2.15, n = 4). General practitioner involvement was less likely for Black than the White reference group. No significant variations over time were found across all the main outcomes. Conclusions: Our updated meta-analyses reveal persisting but not significantly worsening patterns of ethnic inequalities in pathways to psychiatric care, particularly affecting Black groups. This provides a comprehensive evidence base from which to inform policy and practice amidst a prospective Mental Health Act reform. Trial registration: CRD42017071663Peer reviewedFinal Published versio

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
    corecore