4,808 research outputs found
Photoluminescence-Based Current-Voltage Characterisation of Individual Subcells in Multi-Junction Devices
We demonstrate a photoluminescence based, contactless method to determine the current-voltage characteristics of the individual subcells in a multi-junction solar cell. The method, furthers known results for single junction devices and relies upon the reciprocity relation between the absorption and emission properties on a solar cell. Laser light with a suitable energy is used to excite carriers selectively in one junction and the internal voltages are deduced from the intensity of the resulting luminescence. The IV curves obtained this way on 1J, 2J and 6J devices are compared to those obtained using electroluminescence. Good agreement is obtained at high injection conditions while discrepancies at low injection are attributed to in-plane carrier transport
Renormalization in General Gauge Mediation
We revisit General Gauge Mediation (GGM) in light of the supersymmetric
(linear) sigma model by utilizing the current superfield. The current
superfield in the GGM is identified with supersymmetric extension of the vector
symmetry current of the sigma model while spontaneous breakdown of
supersymmetry in the GGM corresponds to soft breakdown of the axial vector
symmetry of the sigma model. We first derive the current superfield from the
supersymmetric linear sigma model and then compute 2-point functions of the
current superfield using the (anti-)commutation relations of the messenger
component fields. After the global symmetry are weakly gauged, the 2-point
functions of the current superfield are identified with a part of the 2-point
functions of the associated vector superfield. We renormalize them by
dimensional regularization and show that physical gaugino and sfermion masses
of the MSSM are expressed in terms of the wavefunction renormalization
constants of the component fields of the vector superfield.Comment: 25 pages, 12 figure
Flavor conversion of cosmic neutrinos from hidden jets
High energy cosmic neutrino fluxes can be produced inside relativistic jets
under the envelopes of collapsing stars. In the energy range E ~ (0.3 - 1e5)
GeV, flavor conversion of these neutrinos is modified by various matter effects
inside the star and the Earth. We present a comprehensive (both analytic and
numerical) description of the flavor conversion of these neutrinos which
includes: (i) oscillations inside jets, (ii) flavor-to-mass state transitions
in an envelope, (iii) loss of coherence on the way to observer, and (iv)
oscillations of the mass states inside the Earth. We show that conversion has
several new features which are not realized in other objects, in particular
interference effects ("L- and H- wiggles") induced by the adiabaticity
violation. The neutrino-neutrino scattering inside jet and inelastic neutrino
interactions in the envelope may produce some additional features at E > 1e4
GeV. We study dependence of the probabilities and flavor ratios in the
matter-affected region on angles theta13 and theta23, on the CP-phase delta, as
well as on the initial flavor content and density profile of the star. We show
that measurements of the energy dependence of the flavor ratios will, in
principle, allow to determine independently the neutrino and astrophysical
parameters.Comment: 56 pages, 19 figures. Minor changes. Accepted by JHEP
Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra
We define a theory of Galilean gravity in 2+1 dimensions with cosmological
constant as a Chern-Simons gauge theory of the doubly-extended Newton-Hooke
group, extending our previous study of classical and quantum gravity in 2+1
dimensions in the Galilean limit. We exhibit an r-matrix which is compatible
with our Chern-Simons action (in a sense to be defined) and show that the
associated bi-algebra structure of the Newton-Hooke Lie algebra is that of the
classical double of the extended Heisenberg algebra. We deduce that, in the
quantisation of the theory according to the combinatorial quantisation
programme, much of the quantum theory is determined by the quantum double of
the extended q-deformed Heisenberg algebra.Comment: 22 page
On the Perturbative Stability of Quantum Field Theories in de Sitter Space
We use a field theoretic generalization of the Wigner-Weisskopf method to
study the stability of the Bunch-Davies vacuum state for a massless,
conformally coupled interacting test field in de Sitter space. We find that in
theory the vacuum does {\em not} decay, while in
non-conformally invariant models, the vacuum decays as a consequence of a
vacuum wave function renormalization that depends \emph{singularly} on
(conformal) time and is proportional to the spatial volume. In a particular
regularization scheme the vacuum wave function renormalization is the same as
in Minkowski spacetime, but in terms of the \emph{physical volume}, which leads
to an interpretation of the decay. A simple example of the impact of vacuum
decay upon a non-gaussian correlation is discussed. Single particle excitations
also decay into two particle states, leading to particle production that
hastens the exiting of modes from the de Sitter horizon resulting in the
production of \emph{entangled superhorizon pairs} with a population consistent
with unitary evolution. We find a non-perturbative, self-consistent "screening"
mechanism that shuts off vacuum decay asymptotically, leading to a stationary
vacuum state in a manner not unlike the approach to a fixed point in the space
of states.Comment: 36 pages, 4 figures. Version to appear in JHEP, more explanation
A Single-Arm, Proof-Of-Concept Trial of Lopimune (Lopinavir/Ritonavir) as a Treatment for HPV-Related Pre-Invasive Cervical Disease
BACKGROUND:
Cervical cancer is the most common female malignancy in the developing nations and the third most common cancer in women globally. An effective, inexpensive and self-applied topical treatment would be an ideal solution for treatment of screen-detected, pre-invasive cervical disease in low resource settings.
METHODS:
Between 01/03/2013 and 01/08/2013, women attending Kenyatta National Hospital's Family Planning and Gynaecology Outpatients clinics were tested for HIV, HPV (Cervista®) and liquid based cervical cytology (LBC -ThinPrep®). HIV negative women diagnosed as high-risk HPV positive with high grade squamous intraepithelial lesions (HSIL) were examined by colposcopy and given a 2 week course of 1 capsule of Lopimune (CIPLA) twice daily, to be self-applied as a vaginal pessary. Colposcopy, HPV testing and LBC were repeated at 4 and 12 weeks post-start of treatment with a final punch biopsy at 3 months for histology. Primary outcome measures were acceptability of treatment with efficacy as a secondary consideration.
RESULTS:
A total of 23 women with HSIL were treated with Lopimune during which time no adverse reactions were reported. A maximum concentration of 10 ng/ml of lopinavir was detected in patient plasma 1 week after starting treatment. HPV was no longer detected in 12/23 (52.2%, 95%CI: 30.6-73.2%). Post-treatment cytology at 12 weeks on women with HSIL, showed 14/22 (63.6%, 95%CI: 40.6-82.8%) had no dysplasia and 4/22 (18.2%, 95%CI: 9.9-65.1%) were now low grade demonstrating a combined positive response in 81.8% of women of which 77.8% was confirmed by histology. These data are supported by colposcopic images, which show regression of cervical lesions.
CONCLUSIONS:
These results demonstrate the potential of Lopimune as a self-applied therapy for HPV infection and related cervical lesions. Since there were no serious adverse events or detectable post-treatment morbidity, this study indicates that further trials are clearly justified to define optimal regimes and the overall benefit of this therapy.
TRIAL REGISTRATION:
ISRCTN Registry 48776874
Migration and Development: a Bottom-Up Approach. A Handbook for Practitioners and Policymakers
Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb−1 of pp collisions at s=13TeV with the ATLAS experiment
A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5)
- …
