2,055 research outputs found

    A simulation study on the effect of sodium on grain boundary passivation in CIGS thin-film solar cells

    Get PDF
    3D numerical simulations of CIGS thin-film solar cells with different grain-boundary (GB) characteristics have been carried out in order to investigate the effect of defect properties and band edge shifts at GBs on the cell performance. Simulation results are compared with experimental data taken on cells with and without NaF post deposition treatment. GBs with different energy gaps and defect properties have been analyzed. Simulations support the idea that the detrimental effect of defective GBs on the cell performance might be reduced by a treatment with Na. The results of this study can help with the interpretation of experimental findings

    An evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays

    Full text link
    We present a global analysis of leptonic and semileptonic kaon decay data, including all recent results published by the BNL-E865, KLOE, KTeV, ISTRA+ and NA48 experiments. This analysis, in conjunction with precise lattice calculations of the hadronic matrix elements now available, leads to a very precise determination of |Vus| and allows us to perform several stringent tests of the Standard Model.Comment: LaTeX, 25 pages, 12 figures, 16 tables. Submitted to EPJC. v2: Minor changes for accepted version. No numerical results change

    Fingerprints Indicating Superior Properties of Internal Interfaces in Cu(In,Ga)Se2 Thin-Film Solar Cells

    Get PDF
    Growth of Cu(In,Ga)Se2 (CIGS) absorbers under Cu-poor conditions gives rise to incorporation of numerous defects into the bulk, whereas the same absorber grown under Cu-rich conditions leads to a stoichiometric bulk with minimum defects. This suggests that CIGS absorbers grown under Cu-rich conditions are more suitable for solar cell applications. However, the CIGS solar cell devices with record efficiencies have all been fabricated under Cu-poor conditions, despite the expectations. Therefore, in the present work, both Cu-poor and Cu-rich CIGS cells are investigated, and the superior properties of the internal interfaces of the Cu-poor CIGS cells, such as the p-n junction and grain boundaries, which always makes them the record-efficiency devices, are shown. More precisely, by employing a correlative microscopy approach, the typical fingerprints for superior properties of internal interfaces necessary for maintaining a lower recombination activity in the cell is discovered. These are a Cu-depleted and Cd-enriched CIGS absorber surface, near the p-n junction, as well as a negative Cu factor (∆β) and high Na content (>1.5 at%) at the grain boundaries. Thus, this work provides key factors governing the device performance (efficiency), which can be considered in the design of next-generation solar cells

    NaNet: a Low-Latency, Real-Time, Multi-Standard Network Interface Card with GPUDirect Features

    Full text link
    While the GPGPU paradigm is widely recognized as an effective approach to high performance computing, its adoption in low-latency, real-time systems is still in its early stages. Although GPUs typically show deterministic behaviour in terms of latency in executing computational kernels as soon as data is available in their internal memories, assessment of real-time features of a standard GPGPU system needs careful characterization of all subsystems along data stream path. The networking subsystem results in being the most critical one in terms of absolute value and fluctuations of its response latency. Our envisioned solution to this issue is NaNet, a FPGA-based PCIe Network Interface Card (NIC) design featuring a configurable and extensible set of network channels with direct access through GPUDirect to NVIDIA Fermi/Kepler GPU memories. NaNet design currently supports both standard - GbE (1000BASE-T) and 10GbE (10Base-R) - and custom - 34~Gbps APElink and 2.5~Gbps deterministic latency KM3link - channels, but its modularity allows for a straightforward inclusion of other link technologies. To avoid host OS intervention on data stream and remove a possible source of jitter, the design includes a network/transport layer offload module with cycle-accurate, upper-bound latency, supporting UDP, KM3link Time Division Multiplexing and APElink protocols. After NaNet architecture description and its latency/bandwidth characterization for all supported links, two real world use cases will be presented: the GPU-based low level trigger for the RICH detector in the NA62 experiment at CERN and the on-/off-shore data link for KM3 underwater neutrino telescope

    GPU-based Real-time Triggering in the NA62 Experiment

    Full text link
    Over the last few years the GPGPU (General-Purpose computing on Graphics Processing Units) paradigm represented a remarkable development in the world of computing. Computing for High-Energy Physics is no exception: several works have demonstrated the effectiveness of the integration of GPU-based systems in high level trigger of different experiments. On the other hand the use of GPUs in the low level trigger systems, characterized by stringent real-time constraints, such as tight time budget and high throughput, poses several challenges. In this paper we focus on the low level trigger in the CERN NA62 experiment, investigating the use of real-time computing on GPUs in this synchronous system. Our approach aimed at harvesting the GPU computing power to build in real-time refined physics-related trigger primitives for the RICH detector, as the the knowledge of Cerenkov rings parameters allows to build stringent conditions for data selection at trigger level. Latencies of all components of the trigger chain have been analyzed, pointing out that networking is the most critical one. To keep the latency of data transfer task under control, we devised NaNet, an FPGA-based PCIe Network Interface Card (NIC) with GPUDirect capabilities. For the processing task, we developed specific multiple ring trigger algorithms to leverage the parallel architecture of GPUs and increase the processing throughput to keep up with the high event rate. Results obtained during the first months of 2016 NA62 run are presented and discussed

    K^+ -> pi^+pi^0e^+e^-: a novel short-distance probe

    Full text link
    We study the decay K^+ -> pi^+ pi^0 e^+ e^-, currently under analysis by the NA62 Collaboration at CERN. In particular, we provide a detailed analysis of the Dalitz plot for the long-distance, gamma^*-mediated, contributions (Bremsstrahlung, direct emission and its interference). We also examine a set of asymmetries to isolate genuine short-distance effects. While we show that charge asymmetries are not required to test short distances, they provide the best environment for its detection. This constitutes by itself a strong motivation for NA62 to study K^- decays in the future. We therefore provide a detailed study of different charge asymmetries and the corresponding estimated signals. Whenever possible, we make contact with the related processes K^+ -> pi^+ pi^0 gamma and K_L -> pi^+ pi^- e^+ e^- and discuss the advantages of K^+ -> pi^+ pi^0 e^+ e^- over them.Comment: 25 pages, 6 figure

    Circulating DNA: Diagnostic Tool and Predictive Marker for Overall Survival of NSCLC Patients

    Get PDF
    PURPOSE: The purpose of our study was to determine whether the amounts of circulating DNA (cDNA) could discriminate between NSCLC patients and healthy individuals and assess its value as a prognostic marker of this disease. METHODS: We conducted a study of 309 individuals and the cDNA levels were assessed through real-time PCR methodology. RESULTS: We found increased cDNA levels in NSCLC patients compared to control individuals. We also found a decreased overall survival time in patients presenting high cDNA levels, when compared to lower cDNA concentrations. CONCLUSIONS: Quantification of cDNA may be a good tool for NSCLC detection with potential for clinical applicability

    A novel CXCR4 antagonist counteracts paradoxical generation of cisplatin-induced pro-metastatic niches in lung cancer

    Get PDF
    Platinum-based chemotherapy remains widely used in advanced non-small cell lung cancer (NSCLC) despite experimental evidence of its potential to induce long-term detrimental effects, including the promotion of pro-metastatic microenvironments. In this study, we investigated the interconnected pathways underlying the promotion of cisplatin-induced metastases. In tumor-free mice, cisplatin treatment resulted in an expansion in the bone marrow of CCR2+CXCR4+Ly6Chigh inflammatory monocytes (IMs) and an increase in lung levels of stromal SDF-1, the CXCR4 ligand. In experimental lung metastasis assays, cisplatin-induced IMs promoted the extravasation of tumor cells and the expansion of CD133+CXCR4+ metastasis-initiating cells (MICs). Peptide R, a novel CXCR4 inhibitor designed as an SDF-1 mimetic peptide, prevented cisplatin-induced IM expansion, the recruitment of IMs into the lungs, and the promotion of metastasis. At the primary tumor site, cisplatin treatment reduced tumor size while simultaneously inducing tumor release of SDF-1, MIC expansion, and recruitment of pro-invasive CXCR4+ macrophages. Co-recruitment of MICs and CCR2+CXCR4+ IMs to distant SDF-1-enriched sites also promoted spontaneous metastases that were prevented by CXCR4 blockade. In clinical specimens from NSCLC patients SDF-1 levels were found to be higher in platinum-treated samples and related to a worse clinical outcome. Our findings reveal that activation of the CXCR4/SDF-1 axis specifically mediates the pro-metastatic effects of cisplatin and suggest CXCR4 blockade as a possible novel combination strategy to control metastatic disease

    The NA48 LKr calorimeter digitizer electronics chain

    Get PDF
    The 13 500 channels of the NA48 liquid-krypton electromagnetic calorimeter readout electronics were put into operation in 1997. The digitizer electronics employs a new gain switching technique that expands the dynamic range of a standard 10-bit ADC to 14 bits at 40 MHz sampling rate employing a custom-developed integrated circuit (KRYPTON). The KRYPTON has been fabricated in 1.2 μm BiCMOS technology and was successfully developed together with industry on a short timescale. The performance and the experience from the first year of the operation of the liquid-krypton calorimeter electronics will also be briefly discussed

    The Fast Read-out System for the MAPMTs of COMPASS RICH-1

    Full text link
    A fast readout system for the upgrade of the COMPASS RICH detector has been developed and successfully used for data taking in 2006 and 2007. The new readout system for the multi-anode PMTs in the central part of the photon detector of the RICH is based on the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1-TDC chip characterized by high-resolution. The readout electronics has been designed taking into account the high photon flux in the central part of the detector and the requirement to run at high trigger rates of up to 100 kHz with negligible dead-time. The system is designed as a very compact setup and is mounted directly behind the multi-anode photomultipliers. The data are digitized on the frontend boards and transferred via optical links to the readout system. The read-out electronics system is described in detail together with its measured performances.Comment: Proceeding of RICH2007 Conference, Trieste, Oct. 2007. v2: minor change
    • …
    corecore