17 research outputs found

    Avaliação de agroquímicos comerciais (in vitro e in vivo) para o controle da pinta branca do milho.

    Get PDF
    bitstream/item/25637/1/Com-115.pd

    Avaliação de produtos químicos comerciais, in vitro e in vivo, no controle da doença foliar, mancha branca do milho, causada por Pantoea ananatis.

    No full text
    Uma bactéria identificada como Pantoea ananatis foi recentemente isolada de lesões jovens da doença mancha branca do milho de plantas naturalmente infectadas. Esta bateria reproduziu sintomas semelhantes aos da doença quando inoculada em plantas de milho em casa de vegetação. Estudos anteriores realizados por outros autores demonstraram que o controle desta doença em condições de campo foi obtido pelo uso de fungicidas, principalmente o Mancozeb, nas fases iniciais de seu desenvolvimento. O objetivo deste estudo foi avaliar a freqüência de isolamento da bactéria P. ananatis a partir de plantas infectadas coletadas na região de Londrina, Estado do Paraná, e reproduzir sintomas da doença através de inoculações artificiais em plantas de milho em casa de vegetação. Utilizando os produtos químicos testados anteriormente por outros autores para o controle desta doença a campo, foi também objetivo deste trabalho avaliar o potencial destes produtos na inibição da bactéria tanto em condições de laboratório como em condições de infecção natural. Os resultados mostraram que P. ananatis foi isolada em 40% das lesões jovens coletadas a campo e quando inoculada em casa de vegetação sob condições controladas reproduziu sintomas semelhantes aos observados a campo. Entre os produtos químicos testados, o fungicida Mancozeb mostrou-se eficiente no controle da doença a campo, em concordância com os relatos anteriores. Este produto inibiu completamente o crescimento da bactéria em laboratório, explicando os resultados obtidos a campo. Os demais produtos não foram eficientes no controle a campo e eles também não inibiram a bactéria em laboratório. Estes resultados representam evidências adicionais de que a bactéria P. ananatis é o agente causal da doença mancha branca do milho.200

    Localization of Pantoea ananatis inside lesions of maize white spot disease using transmission electron microscopy and molecular techniques.

    No full text
    The etiological agent of maize white spot (MWS) disease has been a subject of controversy and discussion. Initially the disease was described as Phaeosphaeria leaf spot caused by Phaeosphaeria maydis. Other authors have suggested the existence of different fungal species causing similar symptoms. Recently, a bacterium, Pantoea ananatis, was described as the causal agent of this disease. The purpose of this study was to offer additional information on the correct etiology of this disease by providing visual evidence of the presence of the bacterium in the interior of the MWS lesions by using transmission electron microscopy (TEM) and molecular techniques. The TEM allowed visualization of a large amount of bacteria in the intercellular spaces of lesions collected from both artificially and naturally infected plants. Fungal structures were not visualized in young lesions. Bacterial primers for the 16S rRNA and rpoB genes were used in PCR reactions 10 amplify DNA extracted from water-soaked (young) and necrotic lesions. The universal fungal oligonucleotide ITS4 was also included to identify the possible presence of funga! structures inside lesions. Positive PCR products from water-soaked lesions, both from naturally and artificially inoculated plants, were produced with bacterial primers, whereas no amplification was observed when ITS4 oligonucleotide was used. On the other hand, DNA amplification with ITS4 primer was observed when DNA was isolated from necrotic (old) lesions. These results reinforced previous report of P. ananatis as the primary pathogen and the hypothesis that fungal species may colonize lesions pre-established by P. ananatis.200

    Localization of Pantoea ananatis inside lesions of maize white spot disease using transmission electron microscopy and molecular techniques.

    No full text
    The etiological agent of maize white spot (MWS) disease has been a subject of controversy and discussion. Initially the disease was described as Phaeosphaeria leaf spot caused by Phaeosphaeria maydis. Other authors have suggested the existence of different fungal species causing similar symptoms. Recently, a bacterium, Pantoea ananatis, was described as the causal agent of this disease. The purpose of this study was to offer additional information on the correct etiology of this disease by providing visual evidence of the presence of the bacterium in the interior of the MWS lesions by using transmission electron microscopy (TEM) and molecular techniques. The TEM allowed visualization of a large amount of bacteria in the intercellular spaces of lesions collected from both artificially and naturally infected plants. Fungal structures were not visualized in young lesions. Bacterial primers for the 16S rRNA and rpoB genes were used in PCR reactions 10 amplify DNA extracted from water-soaked (young) and necrotic lesions. The universal fungal oligonucleotide ITS4 was also included to identify the possible presence of funga! structures inside lesions. Positive PCR products from water-soaked lesions, both from naturally and artificially inoculated plants, were produced with bacterial primers, whereas no amplification was observed when ITS4 oligonucleotide was used. On the other hand, DNA amplification with ITS4 primer was observed when DNA was isolated from necrotic (old) lesions. These results reinforced previous report of P. ananatis as the primary pathogen and the hypothesis that fungal species may colonize lesions pre-established by P. ananatis

    Novel insights into the early stages of infection by oval conidia of Colletotrichum sublineolum.

    No full text
    Anthracnose, caused by Colletotrichum sublineolum Henn. ex Sacc. & Trotter, is one of the most important sorghum [Sorghum bicolor (L.) Moench] diseases in Brazil. This fungus exhibits conidial dimorphism, producing either falcate or oval conidia on solid and liquid media, respectively. We compared patterns of the initial infection events by these two types of conidia on sorghum leaves using light microscopy and scanning electron microscopy. The infection events during the first 24 h were similar for both oval and falcate conidia. Globose and melanized apressoria were formed at 24 h after inoculation (hai) regardless of the conidia type. Dense mycelium and oval conidia developed from germinated falcate conidia at 32 hai. Hyphal mass displaying acervuli filled with falcate conidia and surrounded by setae, developed from germinated oval conidia at 48 hai. Oval conidia were as capable as falcate conidia of infecting sorghum leaves. The inherent ability to grow faster and the easeness with which oval conidia can be produced in vitro as compared to falcate, make the former a preferred choice for studies on the C. sublineolum-sorghum interaction. It would be instructive to further investigate the potential role of the oval conidia in epidemics

    Novel insights into the early stages of infection by oval conidia of Colletotrichum sublineolum.

    No full text
    Anthracnose, caused by Colletotrichum sublineolum Henn. ex Sacc. & Trotter, is one of the most important sorghum [Sorghum bicolor (L.) Moench] diseases in Brazil. This fungus exhibits conidial dimorphism, producing either falcate or oval conidia on solid and liquid media, respectively. We compared patterns of the initial infection events by these two types of conidia on sorghum leaves using light microscopy and scanning electron microscopy. The infection events during the first 24 h were similar for both oval and falcate conidia. Globose and melanized apressoria were formed at 24 h after inoculation (hai) regardless of the conidia type. Dense mycelium and oval conidia developed from germinated falcate conidia at 32 hai. Hyphal mass displaying acervuli filled with falcate conidia and surrounded by setae, developed from germinated oval conidia at 48 hai. Oval conidia were as capable as falcate conidia of infecting sorghum leaves. The inherent ability to grow faster and the easeness with which oval conidia can be produced in vitro as compared to falcate, make the former a preferred choice for studies on the C. sublineolum-sorghum interaction. It would be instructive to further investigate the potential role of the oval conidia in epidemics.201
    corecore