845 research outputs found

    You Can't Get Through Szekeres Wormholes - or - Regularity, Topology and Causality in Quasi-Spherical Szekeres Models

    Full text link
    The spherically symmetric dust model of Lemaitre-Tolman can describe wormholes, but the causal communication between the two asymptotic regions through the neck is even less than in the vacuum (Schwarzschild-Kruskal-Szekeres) case. We investigate the anisotropic generalisation of the wormhole topology in the Szekeres model. The function E(r, p, q) describes the deviation from spherical symmetry if \partial_r E \neq 0, but this requires the mass to be increasing with radius, \partial_r M > 0, i.e. non-zero density. We investigate the geometrical relations between the mass dipole and the locii of apparent horizon and of shell-crossings. We present the various conditions that ensure physically reasonable quasi-spherical models, including a regular origin, regular maxima and minima in the spatial sections, and the absence of shell-crossings. We show that physically reasonable values of \partial_r E \neq 0 cannot compensate for the effects of \partial_r M > 0 in any direction, so that communication through the neck is still worse than the vacuum. We also show that a handle topology cannot be created by identifying hypersufaces in the two asymptotic regions on either side of a wormhole, unless a surface layer is allowed at the junction. This impossibility includes the Schwarzschild-Kruskal-Szekeres case.Comment: zip file with LaTeX text + 6 figures (.eps & .ps). 47 pages. Second replacement corrects some minor errors and typos. (First replacement prints better on US letter size paper.

    Consistency analysis of a nonbirefringent Lorentz-violating planar model

    Full text link
    In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor κμν\kappa_{\mu\nu}. The propagator of the gauge field is explicitly evaluated and expressed in terms of linear independent symmetric tensors, presenting only one physical mode. The same holds for the scalar propagator. A consistency analysis is performed based on the poles of the propagators. The isotropic parity-even sector is stable, causal and unitary mode for 0κ00<10\leq\kappa_{00}<1. On the other hand, the anisotropic sector is stable and unitary but in general noncausal. Finally, it is shown that this planar model interacting with a λφ4\lambda|\varphi|^{4}-Higgs field supports compactlike vortex configurations.Comment: 11 pages, revtex style, final revised versio

    Electromagnetic wave propagation inside a material medium: an effective geometry interpretation

    Get PDF
    We present a method developed to deal with electromagnetic wave propagation inside a material medium that reacts, in general, non-linearly to the field strength. We work in the context of Maxwell' s theory in the low frequency limit and obtain a geometrical representation of light paths for each case presented. The isotropic case and artificial birefringence caused by an external electric field are analyzed as an application of the formalism and the effective geometry associated to the wave propagation is exhibited.Comment: REVTeX file, 6 pages. Version to appear in Phys. Lett.

    Effective Action for QED with Fermion Self-Interaction in D=2 and D=3 Dimensions

    Get PDF
    In this work we discuss the effect of the quartic fermion self-interaction of Thirring type in QED in D=2 and D=3 dimensions. This is done through the computation of the effective action up to quadratic terms in the photon field. We analyze the corresponding nonlocal photon propagators nonperturbatively in % \frac{k}{m}, where k is the photon momentum and m the fermion mass. The poles of the propagators were determined numerically by using the Mathematica software. In D=2 there is always a massless pole whereas for strong enough Thirring coupling a massive pole may appear . For D=3 there are three regions in parameters space. We may have one or two massive poles or even no pole at all. The inter-quark static potential is computed analytically in D=2. We notice that the Thirring interaction contributes with a screening term to the confining linear potential of massive QED_{2}. In D=3 the static potential must be calculated numerically. The screening nature of the massive QED3_{3} prevails at any distance, indicating that this is a universal feature of % D=3 electromagnetic interaction. Our results become exact for an infinite number of fermion flavors.Comment: Latex, 13 pages, 3 figure

    A Raman Study of Morphotropic Phase Boundary in PbZr1-xTixO3 at low temperatures

    Full text link
    Raman spectra of PbZr1-xTixO3 ceramics with titanium concentration varying between 0.40 and 0.60 were measured at 7 K. By observing the concentration-frequency dependence of vibrational modes, we identified the boundaries among rhombohedral, monoclinic, and tetragonal ferroelectric phases. The analysis of the spectra was made in the view of theory group analysis making possible the assignment of some modes for the monoclinic phase.Comment: 5 pages, 4 figure

    On the equivalence between Implicit Regularization and Constrained Differential Renormalization

    Full text link
    Constrained Differential Renormalization (CDR) and the constrained version of Implicit Regularization (IR) are two regularization independent techniques that do not rely on dimensional continuation of the space-time. These two methods which have rather distinct basis have been successfully applied to several calculations which show that they can be trusted as practical, symmetry invariant frameworks (gauge and supersymmetry included) in perturbative computations even beyond one-loop order. In this paper, we show the equivalence between these two methods at one-loop order. We show that the configuration space rules of CDR can be mapped into the momentum space procedures of Implicit Regularization, the major principle behind this equivalence being the extension of the properties of regular distributions to the regularized ones.Comment: 16 page

    Asymptotically Improved Convergence of Optimized Perturbation Theory in the Bose-Einstein Condensation Problem

    Full text link
    We investigate the convergence properties of optimized perturbation theory, or linear δ\delta expansion (LDE), within the context of finite temperature phase transitions. Our results prove the reliability of these methods, recently employed in the determination of the critical temperature T_c for a system of weakly interacting homogeneous dilute Bose gas. We carry out the explicit LDE optimized calculations and also the infrared analysis of the relevant quantities involved in the determination of TcT_c in the large-N limit, when the relevant effective static action describing the system is extended to O(N) symmetry. Then, using an efficient resummation method, we show how the LDE can exactly reproduce the known large-N result for TcT_c already at the first non-trivial order. Next, we consider the finite N=2 case where, using similar resummation techniques, we improve the analytical results for the nonperturbative terms involved in the expression for the critical temperature allowing comparison with recent Monte Carlo estimates of them. To illustrate the method we have considered a simple geometric series showing how the procedure as a whole works consistently in a general case.Comment: 38 pages, 3 eps figures, Revtex4. Final version in press Phys. Rev.

    Influence Of Spin Reorientation On Magnetocaloric Effect In Nd Al2: A Microscopic Model

    Get PDF
    We report a theoretical investigation about the influence of the spin reorientation from easy magnetic direction 001 to the applied magnetic field direction 111 on the magnetocaloric properties of Nd Al2. This compound was fully investigated using a model Hamiltonian which includes the Zeeman-exchange interactions and the crystalline electrical field, which are responsible for the magnetic anisotropy. All theoretical results were obtained using the proper model parameters for Nd Al2, found in the literature. The existence of a minimum in magnetic entropy change below the phase transition was predicted and ascribed to the strong jump on the spin reorientation. © 2006 The American Physical Society.745Tishin, A.M., Spichkin, Y.I., (2003) The Magnetocaloric Effect and Its Applications, , Institute of Physics, BristolPecharsky, V.K., Gschneidner Jr., K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , PRLTAO 0031-9007 10.1103/PhysRevLett.78.4494Tegus, O., Brück, E., Buschow, K.H.J., De Boer, F.R., (2002) Nature, 415, p. 150. , NATUAS 0028-0836 10.1038/415150AWada, H., Tanabe, Y., (2001) Appl. Phys. Lett., 79, p. 3302. , APPLAB 0003-6951Wada, H., Morikawa, T., Taniguchi, K., Shibata, T., Yamada, Y., Akishige, Y., (2003) Physica B, 328, p. 114. , PHYBE3 0921-4526 10.1016/S0921-4526(02)01822-7Hu, F., Shen, B., Sun, J., Cheng, Z., Rao, G., Zhang, X., (2001) Appl. Phys. Lett., 78, p. 3675. , APPLAB 0003-6951Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K., (2003) Phys. Rev. B, 67, p. 104416. , PRBMDO 0163-1829 10.1103/PhysRevB.67.104416Brown, G.V., (1976) J. Appl. Phys., 47, p. 3673. , JAPIAU 0021-8979 10.1063/1.323176Von Ranke, P.J., De Oliveira, N.A., Gama, S., (2004) J. Magn. Magn. Mater., 277, p. 78. , JMMMDC 0304-8853 10.1016/j.jmmm.2003.10.013Von Ranke, P.J., De Oliveira, N.A., Gama, S., (2004) Phys. Lett. a, 320, p. 302. , PYLAAG 0375-9601 10.1016/j.physleta.2003.10.067Von Ranke, P.J., De Campos, A., Caron, L., Coelho, A.A., Gama, S., De Oliveira, N.A., (2004) Phys. Rev. B, 70, p. 094410. , PRBMDO 0163-1829 10.1103/PhysRevB.70.094410Gama, S., Coelho, A.A., De Campos, A., Carvalho, A.M., Gandra, F.C.G., Von Ranke, P., De Oliveira, N.A., (2004) Phys. Rev. Lett., 93, p. 237202. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.237202Von Ranke, P.J., De Oliveira, N.A., Mello, C., Carvalho, A.M., Gama, S., (2005) Phys. Rev. B, 71, p. 054410. , PRBMDO 0163-1829 10.1103/PhysRevB.71.054410Von Ranke, P.J., Gama, S., Coelho, A.A., De Campos, A., Carvalho, A.M., Gandra, F.C.G., De Oliveira, N.A., (2006) Phys. Rev. B, 73, p. 014415. , PRBMDO 0163-1829 10.1103/PhysRevB.73.014415Von Ranke, P.J., Pecharsky, V.K., Gschneidner, K.A., Korte, B.J., (1998) Phys. Rev. B, 58, p. 14436. , PRBMDO 0163-1829 10.1103/PhysRevB.58.14436Von Ranke, P.J., Mota, M.A., Grangeia, D.F., Carvalho, A.M., Gandra, F.C.G., Coelho, A.A., Caldas, A., Gama, S., (2004) Phys. Rev. B, 70, p. 134428. , PRBMDO 0163-1829 10.1103/PhysRevB.70.134428Lima, A.L., Tsokol, A.O., Gschneidner Jr., K.A., Pecharsky, V.K., Lograsso, T.A., Schlagel, D.L., (2005) Phys. Rev. B, 72, p. 024403. , PRBMDO 0163-1829 10.1103/PhysRevB.72.024403Von Ranke, P.J., De Oliveira, I.G., Guimaraes, A.P., Da Silva, X.A., (2000) Phys. Rev. B, 61, p. 447. , PRBMDO 0163-1829 10.1103/PhysRevB.61.447Lea, K.R., Leask, M.J.M., Wolf, W.P., (1962) J. Phys. Chem. Solids, 33, p. 1381. , JPCSAW 0022-3697Stevens, K.W.H., (1952) Proc. Phys. Soc., London, Sect. a, 65, p. 209. , PPSAAM 0370-1298 10.1088/0370-1298/65/3/308Purwins, H.G., Leson, A., (1990) Adv. Phys., 39, p. 309. , ADPHAH 0001-8732 10.1080/00018739000101511Bak, P., (1974) J. Phys. C, 7, p. 4097. , JPSOAW 0022-3719 10.1088/0022-3719/7/22/014Nereson, N., Olsen, C., Arnold, G., (1996) J. Appl. Phys., 37, p. 4575. , JAPIAU 0021-8979 10.1063/1.1708083Deenadas, C., Thompson, A.W., Graig, R.S., Wallace, W.E., (1971) J. Phys. Chem. Solids, 32, p. 1843. , JPCSAW 0022-3697Inoue, T., Sankar, S.G., Graig, R.S., Wallace, W.E., Gschneidner Jr., K.A., (1997) J. Phys. Chem. Solids, 38, p. 487. , JPCSAW 0022-3697Barbara, B., Boucherle, J.X., Michelutti, B., Rossignol, M.F., (1979) Solid State Commun., 31, p. 477. , SSCOA4 0038-1098Barbara, B., Rossignol, M.F., Boucherle, J.X., (1975) Phys. Lett., 55, p. 321. , PYLAAG 0375-9601 10.1016/0375-9601(75)90489-

    Higher Order Evaluation of the Critical Temperature for Interacting Homogeneous Dilute Bose Gases

    Get PDF
    We use the nonperturbative linear \delta expansion method to evaluate analytically the coefficients c_1 and c_2^{\prime \prime} which appear in the expansion for the transition temperature for a dilute, homogeneous, three dimensional Bose gas given by T_c= T_0 \{1 + c_1 a n^{1/3} + [ c_2^{\prime} \ln(a n^{1/3}) +c_2^{\prime \prime} ] a^2 n^{2/3} + {\cal O} (a^3 n)\}, where T_0 is the result for an ideal gas, a is the s-wave scattering length and n is the number density. In a previous work the same method has been used to evaluate c_1 to order-\delta^2 with the result c_1= 3.06. Here, we push the calculation to the next two orders obtaining c_1=2.45 at order-\delta^3 and c_1=1.48 at order-\delta^4. Analysing the topology of the graphs involved we discuss how our results relate to other nonperturbative analytical methods such as the self-consistent resummation and the 1/N approximations. At the same orders we obtain c_2^{\prime\prime}=101.4, c_2^{\prime \prime}=98.2 and c_2^{\prime \prime}=82.9. Our analytical results seem to support the recent Monte Carlo estimates c_1=1.32 \pm 0.02 and c_2^{\prime \prime}= 75.7 \pm 0.4.Comment: 29 pages, 3 eps figures. Minor changes, one reference added. Version in press Physical Review A (2002

    Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions

    Full text link
    A microscopic heterogeneous system under random influence is considered. The randomness enters the system at physical boundary of small scale obstacles as well as at the interior of the physical medium. This system is modeled by a stochastic partial differential equation defined on a domain perforated with small holes (obstacles or heterogeneities), together with random dynamical boundary conditions on the boundaries of these small holes. A homogenized macroscopic model for this microscopic heterogeneous stochastic system is derived. This homogenized effective model is a new stochastic partial differential equation defined on a unified domain without small holes, with static boundary condition only. In fact, the random dynamical boundary conditions are homogenized out, but the impact of random forces on the small holes' boundaries is quantified as an extra stochastic term in the homogenized stochastic partial differential equation. Moreover, the validity of the homogenized model is justified by showing that the solutions of the microscopic model converge to those of the effective macroscopic model in probability distribution, as the size of small holes diminishes to zero.Comment: Communications in Mathematical Physics, to appear, 200
    corecore