We investigate the convergence properties of optimized perturbation theory,
or linear δ expansion (LDE), within the context of finite temperature
phase transitions. Our results prove the reliability of these methods, recently
employed in the determination of the critical temperature T_c for a system of
weakly interacting homogeneous dilute Bose gas. We carry out the explicit LDE
optimized calculations and also the infrared analysis of the relevant
quantities involved in the determination of Tc in the large-N limit, when
the relevant effective static action describing the system is extended to O(N)
symmetry. Then, using an efficient resummation method, we show how the LDE can
exactly reproduce the known large-N result for Tc already at the first
non-trivial order. Next, we consider the finite N=2 case where, using similar
resummation techniques, we improve the analytical results for the
nonperturbative terms involved in the expression for the critical temperature
allowing comparison with recent Monte Carlo estimates of them. To illustrate
the method we have considered a simple geometric series showing how the
procedure as a whole works consistently in a general case.Comment: 38 pages, 3 eps figures, Revtex4. Final version in press Phys. Rev.