27,519 research outputs found

    Impact of Power Allocation and Antenna Directivity in the Capacity of a Multiuser Cognitive Ad Hoc Network

    Get PDF
    This paper studies the benefits that power control and antenna directivity can bring to the capacity of a multiuser cognitive radio network. The main objective is to optimize the secondary network sum rate under the capacity constraint of the primary network. Exploiting location awareness, antenna directivity, and the power control capability, the cognitive radio ad hoc network can broaden its coverage and improve capacity. Computer simulations show that by employing the proposed method the system performance is significantly enhanced compared to conventional fixed power allocation

    Statistical multifragmentation model with discretized energy and the generalized Fermi breakup. I. Formulation of the model

    Full text link
    The Generalized Fermi Breakup recently demonstrated to be formally equivalent to the Statistical Multifragmentation Model, if the contribution of excited states are included in the state densities of the former, is implemented. Since this treatment requires the application of the Statistical Multifragmentation Model repeatedly on the hot fragments until they have decayed to their ground states, it becomes extremely computational demanding, making its application to the systems of interest extremely difficult. Based on exact recursion formulae previously developed by Chase and Mekjian to calculate the statistical weights very efficiently, we present an implementation which is efficient enough to allow it to be applied to large systems at high excitation energies. Comparison with the GEMINI++ sequential decay code shows that the predictions obtained with our treatment are fairly similar to those obtained with this more traditional model.Comment: 8 pages, 6 figure

    Experimental analysis of lateral impact on planar brittle material: spatial properties of the cracks

    Get PDF
    The breakup of glass and alumina plates due to planar impacts on one of their lateral sides is studied. Particular attention is given to investigating the spatial location of the cracks within the plates. Analysis based on a phenomenological model suggests that bifurcations along the cracks' paths are more likely to take place closer to the impact region than far away from it, i. e., the bifurcation probability seems to lower as the perpendicular distance from the impacted lateral in- creases. It is also found that many observables are not sensitive to the plate material used in this work, as long as the fragment multiplicities corresponding to the fragmentation of the plates are similar. This gives support to the universal properties of the fragmentation process reported in for- mer experiments. However, even under the just mentioned circumstances, some spatial observables are capable of distinguishing the material of which the plates are made and, therefore, it suggests that this universality should be carefully investigated
    corecore