16 research outputs found

    A Palatable Hyperlipidic Diet Causes Obesity and Affects Brain Glucose Metabolism in Rats

    Get PDF
    Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age

    Is there still room to explore cyclodextrin glycosyltransferase-producers in Brazilian biodiversity?

    Get PDF
    In the present work, different Brazilian biomes aiming to identify and select cyclodextrin glycosyltransferase-producer bacteria are explored. This enzyme is responsible for converting starch to cyclodextrin, which are interesting molecules to carry other substances of economic interest applied by textile, pharmaceutical, food, and other industries. Based on the enzymatic index, 12 bacteria were selected and evaluated, considering their capacity to produce the enzyme in culture media containing different starch sources. It was observed that the highest yields were presented by the bacteria when grown in cornstarch. These bacteria were also characterized by sequencing of the 16S rRNA region and were classified as Bacillus, Paenibacillus, Gracilibacillus and Solibacillus.publishersversionpublishe

    Is there still room to explore cyclodextrin glycosyltransferase-producers in Brazilian biodiversity?

    No full text
    ABSTRACT In the present work, different Brazilian biomes aiming to identify and select cyclodextrin glycosyltransferase-producer bacteria are explored. This enzyme is responsible for converting starch to cyclodextrin, which are interesting molecules to carry other substances of economic interest applied by textile, pharmaceutical, food, and other industries. Based on the enzymatic index, 12 bacteria were selected and evaluated, considering their capacity to produce the enzyme in culture media containing different starch sources. It was observed that the highest yields were presented by the bacteria when grown in cornstarch. These bacteria were also characterized by sequencing of the 16S rRNA region and were classified as Bacillus, Paenibacillus, Gracilibacillus and Solibacillus
    corecore