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A palatable hyperlipidic diet causes obesity and
affects brain glucose metabolism in rats
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Abstract

Background: We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or
the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the
time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose
metabolism.

Methods: Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-
90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation.
The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain
was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion
of [1-14C]-glucose to lipids.

Results: The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90
groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose
level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated
in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin
receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90
and CH30-90 groups.

Conclusion: These findings indicate that both H and CH diet regimens increased body adiposity independent
treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected
brain metabolism when started at an early age.

Introduction
Glucose is considered to be the major nutrient for cells
of the adult nervous system. A small portion of glucose
is used for biosynthesis pathways. Dhopeshwarkar and
Subramanian [1] showed that intracranially administered
D- [U-14C] glucose was incorporated in saturated fatty
acids and, to a lesser extent, in monounsaturated fatty
acids. Poor glucose metabolism has also been related to
memory problems [2].
In a previous review, it was reported that high-fat diets,

especially diets enriched with saturated fatty acids,
impaired the learning and memory of rodents and that
these effects could be related to insulin resistance and

impaired glucose metabolism [3,4]. However, polyunsatu-
rated fatty acids improve cognitive function and are ben-
eficial for the prevention of cognitive decline [5]. Kaiyala
et al. [6] reported a reduction of insulin uptake and clear-
ance by the central nervous system in dogs that were fed
a hyperlipidic diet.
Insulin receptors are expressed in several regions of the

central nervous system [7,8]. Experimental evidence has
demonstrated the important role of the insulin central
receptors as normal energy balance controllers [9-11] in
addition to their role in neuronal growth and differentia-
tion during development [12,13]. According to Carvalheira
et al. [14], insulin modulates the leptin signal transduction
pathway in the hypothalamus, playing a synergistic role in
regulating food intake and controlling weight.
Previous experiments have shown that rats fed a high-

fat diet had an increased fat mass percentage even when
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the energy intake was not elevated [15,16]. Likewise, we
previously demonstrated that the continuous intake of a
hyperlipidic palatable diet and the alternation of a high-
fat intake with periods of chow intake for 8 weeks
caused obesity and affected the lipid metabolism of rats
in a similar way, although the energy intake remained
unchanged (KJ) [17].
In these experimental models, obesity was accompa-

nied by hyperleptinemia, normoglycemia, hyperinsuline-
mia and insulin resistance. The age, gender weight, and
period on high-fat diets of the animals influenced their
metabolism [16,18-20].
There are controversial results regarding the effect of

hyperlipidic diets on the expression of leptin receptors
(Ob-Rb and Ob-Ra) in the central nervous system.
Madiehe et al. [21] suggested that a decrease in the levels
of both the long and short form of the hypothalamus
leptin receptors could induce leptin resistance in hyperli-
pidic-fed rats. In mice given a high-fat diet, Lin et al. [22]
reported an increase in mRNA leptin receptor expression
after 8 weeks and a reduction of this expression after 19
weeks. Boado et al. [23] detected OB-Ra up-regulation in
the blood-brain-barrier of the rats after 14 weeks of high-
fat feeding.
The suckling-weaning transition of rats is accompa-

nied by marked dietary changes. Suckling rats eat a very
high-fat, low-carbohydrate diet, and this is replaced by a
low-fat, high-carbohydrate diet at the time of weaning
[24]. The utilization of substrates by the brain depends
on several factors: 1) the plasma concentrations of the
substrate, 2) the permeability of the blood-brain barrier
to the substrates, and 3) the intrinsic capability of the
brain to utilize the substrates [25].
The present study was designed to investigate whether

the continuous feeding of a palatable hyperlipidic diet or
cycling a hyperlipidic diet with a chow diet induced obe-
sity. We evaluated whether the time of the start and
duration of these feeding regimens were relevant and
whether they affected brain glucose metabolism.

Materials and Methods
Animals
The Experimental Research Committee of the Federal
University of São Paulo approved the procedures used
in the experiments presented here (CEP n°0446/03).
Male Wistar rats supplied by the animal care facility of

the Physiology Department of the Federal University of
São Paulo were assigned to 8 groups according to diet
composition: (C) receiving a chow diet, (H) receiving a
palatable hyperlipidic diet and (CH) receiving a cycled
diet (cycles alternating weekly between a chow diet and a
palatable hyperlipidic diet). The time of the start and
duration of these feeding regimens were also studied
using the following groups: diet received from the 30th to

60th day of life (30-60), diet received from the 30th to 90th

day of life (30-90) and diet received from the 60th to 90th

day of life (60-90).
All groups were maintained in a room at 23°C ± 1°C

with light from 7:00 AM to 7:00 PM and received food
and water ad libitum. Body weight and food intake were
measured weekly. Spillage was minimized due to the use
of specially designed covered food cups. All the animals
were sacrificed in the fed state in the early morning to
avoid chronobiological variations. The animals were
acclimatized in a quiet room next to the laboratory under
subdued light for 1 h and were taken to the laboratory
individually to minimize stress.

Preparation of the palatable hyperlipidic diet
The palatable hyperlipidic diet consists of commercial rat
chow plus peanuts, milk chocolate, and sweet biscuits in
the proportion of 3:2:2:1. All components were powdered
and mixed. This diet was composed of 20% protein, 20%
fat, and 40% carbohydrate. The control diet contained 20%
protein, 4.5% fat, and 55% carbohydrate. The caloric densi-
ties of the diets were determined using an IKA-C400 adia-
batic calorimeter. The caloric density was 21.40 kJ/g (35%
of calories from fat) for the palatable hyperlipidic diet and
17.03 kJ/g for the chow diet.

Fatty acid composition of the diets
Five hundred milligrams of the diets were treated with
2.0 mL of methanol:benzene (4:1, v/v) followed by 200
μL of acetyl chloride under light agitation [26]. Fatty acid
methyl esters were separated (SP2560 column, Supelco,
Bellefonte, PA, USA) and quantified using gas-liquid
chromatography with an ionizable flame detector (Perkin
Elmer, Wellesley, MA, USA) and hydrogen as the carrier
gas. The injection and detection temperatures were 260°
C and 280°C, respectively. The run temperature started
at 135°C and increased to 195°C during a run time of 45
min. The fatty acid composition of the diets is presented
in Table 1.

Experimental Procedure
Experiments were performed on the 60th or 90th day of the
rats’ lives, and the rats were killed by decapitation. Trunk
blood was collected, serum was obtained via centrifuga-
tion, and aliquots were taken to measure the concentra-
tion of glucose using commercials kits from Labtest
Diagnostic S.A (Minas Gerais, Brazil) and the concentra-
tions of insulin and leptin using ELISA (Linco Research,
Inc., USA).
The brain was removed, the cerebellum and brain

stem were discarded, and the remaining brain was sliced
as described by Liu et al. (2005) [27] and immediately
incubated to determine the brain glucose consumption,
glucose oxidation, and lipid synthesis. Another set of
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rats was used for the Western blotting analysis. The car-
casses were weighed and stored in a freezer (-20°C) for
lipid content analysis.

Carcass lipid content determination
The carcasses were eviscerated, weighed, and stored at
-20°C. The lipid content was measured as described by
Stansbie et al. [28] and standardized using the method
described by Oller do Nascimento and Williamson [29].
Briefly, the eviscerated carcass was autoclaved at 120°C for
90 min and then homogenized with double its mass of
water. Triplicate aliquots of this homogenate were
weighed and digested in 3 ml of 30% KOH and 3 ml of
ethanol for at least 2 h at 70°C in capped tubes. After cool-
ing, 2 ml of 12 N H2SO4 were added, and the sample was
washed three times with petroleum ether for lipid extrac-
tion. The results are expressed as grams of lipid/100 g of
carcass.

Brain incubation
The total brain was sliced and used for the incubation
procedure (~100 mg). Incubations were performed at 37°
C in 25 ml Erlenmeyer flasks equipped with a central
well. The incubation medium consisted of 2.0 ml of
Krebs-Henseleit buffer containing 5 mM glucose plus
0.04 μCi 14C-glucose with or without 0.5 U/ml insulin, as
it has been previously demonstrated that chronic hyper-
insulinemia could alter the glucose utilization of several
brain regions [30]. The flasks were continuously shaken

and flushed with carbogenium (O2/CO2, 95/5%) during
the incubation period.
After 1 hour, incubation was stopped by the addition of

0.5 ml of 4 N H2SO4 to the main well, and 0.3 ml of
NaOH (1 N) was then added to the central well for
14CO2 collection. After two hours, the brain slices were
removed, and the total lipids were extracted with 10 ml
of chloroform:methanol (2:1). The radioactivity of this
extract represented the conversion of [1-14C]-glucose to
lipids. The rates of conversion of [1-14C]-glucose to
14CO2 and incorporation into the lipid fraction were
expressed as μmol/h × g of tissue. The incubation med-
ium was used for the determination of the brain glucose
consumption using commercials kits from Labtest Diag-
nostic S.A. These methods have been previously
described [31].

Western blot analysis
The rat cranium was opened, and the hypothalamus was
quickly removed, minced coarsely and immediately
homogenized in 1 mL of buffer [100 mM Tris (pH 7.6),
10 mM Na3VO4, 2 mM PMSF, 10 mM EDTA, 100 mM
NaF, 10 mM Na4P2O7, 0.1 mg/mL × aprotinin] using an
ULTRA TURAX IKA T-18 BASIC generator operated at
maximum speed for 30 s. Then, 10% Triton X-100 was
added, and the solution was clarified by centrifugation
(12.000 rpm, 20 min, at 4°C).
The total protein content from the entire tissue extrac-

tion was determined using standard BSA, following pre-
viously described methods [32]. One hundred micrograms
of hypothalamus total protein was loaded onto a sodium
dodecyl sulfate-polyacrilamide gel (5% stacking gel; 10%
running gel), separated by electrophoresis and then elec-
troblotted onto nitrocellulose membranes (Hybond-C
Extra, Amersham) using a wet electroblotter (Bio-Rad,
CA, USA). After blotting, the membranes were blocked in
Tris-buffered saline (TBS)-Tween buffer, pH 7.5 (20 mM
Tris/500 mM NaCl/0.05% Tween-20) containing 10%
skimmed milk powder for 2 h and then exposed to either
anti-insulin receptor (IR) or anti-leptin receptor (OB-R) at
a dilution of 1/200 in TBS-Tween buffer (pH 7.5) contain-
ing 1% BSA for 2 h. The membranes then were washed
and incubated with anti-rabbit Ig or anti-mouse Ig conju-
gated to horseradish peroxidase and diluted to 1/1000 in
the same buffer for 1 h. After a series of washes in TBS-
Tween buffer, the protein bands were visualized by chemi-
luminescence with an ECL luminescence kit (Amersham)
and exposure to Hyper-film ECL (Amersham). The size of
the protein bands was determined using electrophoresis
color markers. The antibodies against IR (sc-711) and OB-
R (sc-8391) were obtained from Santa Cruz Biotechnology
(Santa Cruz, Calif., USA), and the anti-rabbit Ig and anti-
mouse Ig conjugated to horseradish peroxidase were

Table 1 Fatty acid profile of the diets, as percent of total
lipid content

Total Fatty Acid (%)

Fatty Acid C H

C14:0 0.11 0.53

C16:0 13.37 17.85

C16:1n7 0.21 0.15

C17:0 0.09 0.12

C18:0 2.95 11.05

C18:1n9 24.13 36.59

C18:2n6 49.45 27.27

C18:3n3 3.73 0.49

C20:0 0.42 1.19

C22:0 0.04 2.14

C22:2n6 0.04 0.04

C23:0 0.07 0.04

C22:5n3 0.22 0.14

C24:0 0.34 1.15

SFA 17.4 34.06

MUFA 25.59 38.00

PUFA 56.97 27.95

Control diet (C) and palatable hyperlipidic diet (H)

SFA. saturated fatty acids; MUFA. monounsaturated fatty acids; PUFA.
polyunsaturated fatty acids. * Data are means ± SEMs of three determinations.
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obtained from Sigma (USA). A quantitative analysis of the
blots was performed using Image J software.

Statistical Analysis
The results are expressed as the mean ± standard error
of means. Statistical comparisons were carried out using
analysis of variance (one-way ANOVA) following by a
post-hoc analysis (Tukey test) to compare the effects of
the different diets among animals of the same age. The
level of significance was set at p < 0.05.

Results
Body Weight, Energy Intake and Carcass lipid content
The increment in body weight was not significantly dif-
ferent among the C30-60, H30-60 and CH30-60 groups.
When the animals were fed a palatable hyperlipidic diet
or the cycled diet from the 30th to 90th or from the 60th

to 90th day of life, we observed a significant increase in
body weight compared to the respective C groups
(Table 2).
The total caloric intake per body weight gain (kJ/100 g)

was significantly lower in the H60-90, CH60-90 and
CH30-90 groups compared to the C60-90 and C30-90
groups (Table 2).
The palatable hyperlipidic diet and the food cycle treat-

ments increased the relative carcass lipid content in all of
the experimental groups compared to the C groups. In
addition, the H30-60 group had a higher carcass lipid
content than the CH30-60 group (Table 2).

Glucose, leptin and insulin serum concentrations
Rats exposed to the palatable hyperlipidic diet (groups
H30-60, CH30-60, H30-90 and CH30-90) exhibited
higher serum glucose concentrations compared to the
respective chow diet-fed rats. When given the palatable
hyperlipidic diet, either continuously or cycled with

chow beginning on the 60th day of life, the serum glu-
cose levels were not significantly affected.
The serum leptin levels increased in all of the H

groups and in the CH60-90 and CH30-90 groups com-
pared to the respective C groups.
Both diet regimens and the different periods of treat-

ment were effective in increasing the serum insulin con-
centrations in the H30-60, H60-90, CH60-90 and
CH30-90 groups compared to the respective chow diet-
fed rats (Table 3).

Brain glucose consumption, glucose oxidation and brain
lipogenesis rate
The basal brain glucose consumption was lower in the
CH30-60 group than in the C30-60 and H30-60 groups,
and the insulin addition to the media normalized this
parameter. Brain glucose consumption was similar
between the H groups and the C groups with or without
insulin addition (Table 4).
The brain lipogenesis rate from 14C-glucose, both

basal levels and when stimulated by insulin, was
increased in the H30-90 and CH30-90 groups compared
with the C30-90 group (Table 5).
The diet regimens did not alter the brain glucose oxi-

dation in any of the experimental groups compared to
the control groups (Table 6).

Quantification of the Insulin and leptin receptors
(Figure 1A, B and 1C shows the quantification of the
insulin receptor (IR) from the extracted tissue of the
entire hypothalamus of the rats. The cycled diet from
the 30th to 60th day of life significantly decreased the
insulin receptor density compared to the C group.
No significant difference in leptin receptor protein

levels was observed among the groups (Figure 1D, E
and 1F).

Table 2 Increment in body weight (g), total caloric intake (kJ/100 g b.w gain) and carcass relative lipid content (g/100 g)

C H CH

Increment in body weight (g) 30-60 118.1 ± 4.8a 124.7 ± 8.2ª 126.8 ± 6.8ª

60-90 77.1 ± 3.1a 91.9 ± 3.2b 103.9 ± 3.3c

30-90 198.1 ± 9.9a 207.8 ± 7.4ab 237.2 ± 13.5b

Total caloric intake (kJ/100 g b.w) 30-60 7017.9 ± 656.0a 6882.7 ± 464.7ª 6875.1 ± 357.0ª

60-90 15282.7 ± 656.0a 12662.3 ± 408.1b 11057.6 ± 359.7b

30-90 10289.9 ± 642.9a 9675.2 ± 401.6ab 8162.0 ± 369.9b

Carcass Relative lipid content(g/100 g) 30-60 2.32 ± 0.18a 5.48 ± 0.35b 3.94 ± 0.29c

60-90 2.65 ± 0.17a 4.26 ± 0.34b 3.75 ± 0.32b

30-90 2.65 ± 0.17a 3.94 ± 0.26b 3.49 ± 0.21b

Control rats (C), rats treated with palatable hyperlipidic diet (H) and rats treated with food cycles alternating chow and palatable hyperlipidic diets (CH). The
animals received these diets from 30th to 60th days of life (30-60), from 30th to 90th days of life (30-90), or from 60th to 90th days of life (60-90). Values are means
± standard error of the mean of 10 animals. Values in the same row with different superscript letters are significantly different from one another at p < 0.05
(Tukey’s test)
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Discussion
In the present investigation, we found that both hyperli-
pidic diet regimes increased the carcass lipid content in
all of the groups studied. We also found that when the
special diet began on the 30th day of life, the serum glu-
cose level and brain glucose metabolism were more
affected.
The palatable hyperlipidic diet induced a more pro-

nounced body weight gain in the H60-90, CH60-90, and
CH30-90 groups, regardless of the regimen of administra-
tion, i.e., either continuously administered or cycled with
chow, although significant differences were observed
based on the age and treatment period. Because caloric
intake was lower in these animals, the palatable hyperlipi-
dic diet may have increased their metabolic efficiency, as
reported by others [33-35]. Similarly, successive caloric
restriction and high-fat re-feeding cycles have been shown
to increase metabolic efficiency and promote obesity [36].
Experimental data on the effects of palatable hyperlipi-

dic diets are somewhat contradictory with respect to
body weight gain. The collective data are not clear
regarding the effects of hyperlipidic diets, also referred to

as cafeteria diets, on the body weight gain of animals.
Some authors have not reported an increase in body
weight [19,37], whereas others have found an elevated
body weight [38,39].
Both hyperlipidic diet regimes tested here increased

the relative carcass lipid content in all of the studied
groups. Previously, we have shown that a hyperlipidic
diet administered for 8 weeks induced a more pro-
nounced body weight gain and adiposity compared to
chow diet [17]. In the present study, only 4 weeks on a
hyperlipidic diet, both continuously and alternated with
a chow diet, caused an enhancement in adiposity that
was accompanied by an increase in serum leptin con-
centration, which shows that short periods of hyperlipi-
dic diets can promote obesity. In previous studies,
several obese animal models have also developed ele-
vated circulating leptin levels [15,40].
A number of reports have demonstrated that high-fat

diets may promote hyperglycemia [26,41,42]. We found
higher serum glucose levels in the H30-60, CH30-60,
H30-90 and CH30-90 groups than in the respective con-
trol groups. This result may suggest the occurrence of glu-
cose intolerance. In the H60-90 and CH60-90 groups,
glucose intolerance appeared to be compensated for by
hyperinsulinemia, which adjusted serum glucose levels.
In our study, we did not find changes in the levels of

hypothalamic leptin receptor protein, despite the
observed hyperleptinemia. This finding is consistent
with the results of Sahu et al. [43] and Peiser et al. [44]
who also did not verify an alteration in the hypothala-
mus leptin receptor protein levels of rats treated with a
hyperlipidic diet. In contrast, Munzberg et al. [45] stu-
died several regions of the hypothalamus using STAT3
to map leptin-responsive cells in the brain and observed
resistance to leptin action in the arcuate nucleus of the
rats fed a high-fat diet.
Glucose is the major energy substrate for neurons. The

major objective of our study was to analyze the effect of a
hyperlipidic diet, administered either continuously or
cycled with a chow diet, on brain glucose metabolism in
different periods of life in the rat. There are data to

Table 3 Serum glucose (mg/dL), insulin (μU/mL) and
leptin (ng/mL) concentrations

C H CH

Glucose(mg/dL) 30-60 98.7 ± 3.6a 116.9 ± 3.8b 116.5 ± 3.6b

60-90 95.5 ± 4.1a 98.3 ± 2.8a 104.0 ± 5.4a

30-90 95.5 ± 4.1a 115.1 ± 4.4b 115.6 ± 4.7b

Leptin(μU/mL) 30-60 1.57 ± 0.19a 7.41 ± 1.31b 3.54 ± 0.32a

60-90 3.41 ± 0.24a 6.67 ± 0.99b 6.41 ± 1.08b

30-90 3.41 ± 0.24a 8.27 ± 1.01b 9.68 ± 1.76 b

Insulin(ng/mL) 30-60 15.54 ± 1.19a 21.94 ± 1.81b 16.95 ± 1.10a

60-90 19.10 ± 1.45a 25.93 ± 1.57b 29.81 ± 2.52b

30-90 19.10 ± 1.45a 19.63 ± 2.18a 25.48 ± 1.09b

Control rats (C), rats treated with palatable hyperlipidic diet (H) and rats
treated with food cycles alternating chow and palatable hyperlipidic diets
(CH). The animals received these diets from 30th to 60th days of life (30-60),
from 30th to 90th days of life (30-90), or from 60th to 90th days of life (60-90).
Values are means ± standard error of the mean of 10 animals. Values in the
same row with different superscript letters are significantly different from one
another at p < 0.05 (Tukey’s test)

Table 4 Brain glucose consumption (μmol/g tissue/h) of control rats (C)

C H CH

Glucose(μmol/g tissue/h) 30-60 22.52 ± 1.53a 20.84 ± 2.19a 14.59 ± 1.34b

60-90 21.27 ± 1.47a 20.47 ± 1.97a 15.77 ± 2.10a

30-90 21.27 ± 1.47a 22.46 ± 2.19a 19.73 ± 1.81a

Glucose + Insulin(μmol/g tissue/h) 30-60 21.56 ± 2.15a 19.87 ± 1.44a 18.76 ± 1.28a

60-90 21.56 ± 1.93a 18.47 ± 1.43a 15.54 ± 1.78a

30-90 21.56 ± 1.93a 20.06 ± 1.44a 24.35 ± 2.12a

Control rats (C), rats treated with palatable hyperlipidic diet (H) and rats treated with food cycles alternating chow and palatable hyperlipidic diets (CH). The
animals received these diets from 30th to 60th days of life (30-60), from 30th to 90th days of life (30-90), or from 60th to 90th days of life (60-90). Values are means
± standard error of the mean of 10 animals. Values in the same row with different superscript letters are significantly different from one another at p < 0.05
(Tukey’s test)
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suggest a that high-fat diet, especially one enriched in
saturated fatty acids, decreases the learning capacity and
memory of rodents and is related to insulin resistance
and impaired glucose metabolism [3,4].
The administration of successive cycles of chow and

high-fat diets for 30 d (CH30-60) elevated the plasma
glucose levels and diminished the brain glucose con-
sumption in relation to the C30-60 group; this was
accompanied by a decrease in the levels of insulin recep-
tor protein in the hypothalamus. A non-significant
reduction (25.8%) was also observed in brain glucose
consumption in the CH60-90 group compared with the
C60-90 group. However, this result was not observed in
the H animals or the CH30-90 group compared to the
respective controls. In addition, the presence of insulin
in the incubation media elevated brain glucose con-
sumption in the CH30-90 group compared with the
CH60-90 group (24.35 ± 2.12 vs. 15.54 ± 1.78, p < 0.05),
which suggests that long-term treatment caused an
adaptation in brain glucose metabolism.
It was reported in a review [46] that arachidonic acid,

a polyunsaturated fatty acid, stimulates glucose uptake
in cerebral cortical astrocytes and thus plays a role in
the regulation of energy metabolism in the cerebral cor-
tex. In the present study, the high-fat diet that was used
was rich in saturated and monounsaturated fatty acids
and poor in polyunsaturated fatty acids compared to the
chow diet, which could promote a decrease in the

incorporation of polyunsaturated fatty acids in the neu-
ronal cell membrane and cause a decrease in glucose
uptake or a defect in the expression or function of insu-
lin receptors in the brain. Yu et al. [47] showed a posi-
tive correlation between glucose uptake by astrocytes
and arachidonic acid concentration.
As described by Girard et al. [25], the concentration of

GLUT1 and the rate of glucose transport in the rat
brain during the suckling period are lower than the
levels in adult rats. It is important to note that these
changes in brain metabolism correspond to the animal’s
diet: milk during the suckling period, which is high in
fat, or adult solid food, which is high in carbohydrates.
Duelli et al. [48] have reported a decrease in GLUT1

protein density during chronic hyperglycemia followed
by an increase in brain glucose utilization. However,
existing data are inconsistent with respect to the effects
of hyperglycemia on brain glucose consumption. Some
authors have demonstrated a decrease in brain glucose
consumption [49], whereas others have shown an eleva-
tion [50,51].
It has been reported that fat transport mechanisms, oxi-

dation and synthesis are present in some regions of the
brain [52,53]. In our findings, we verified an increase in
the rate of brain lipogenesis from 14C-glucose in the H30-
90 and CH30-90 groups in media with or without insulin.
Bukato et al. [54] have shown that the activity of malic

enzyme and the citrate synthase enzyme in rat brains

Table 5 Brain lipogenesis rate (14C-glucose incorporated in lipid/g tissue/h)

C H CH

Glucose(14C-glucose incorporated in lipid/g tissue/h) 30-60 4.91 ± 0.22a 4.74 ± 0.14a 4.79 ± 0.14a

60-90 4.26 ± 0.17a 4.96 ± 0.23a 4.68 ± 0.29a

30-90 4.26 ± 0.17a 6.05 ± 0.20b 5.79 ± 0.14b

Glucose + insulin(14C-glucose incorporated in lipid/g tissue/h) 30-60 4.77 ± 0.16a 4.76 ± 0.17a 4.46 ± 0.17a

60-90 4.53 ± 0.18a 4.61 ± 0.25a 4.63 ± 0.24a

30-90 4.53 ± 0.18a 5.66 ± 0.18b 5.37 ± 0.10b

Control rats (C), rats treated with palatable hyperlipidic diet (H) and rats treated with food cycles alternating chow and palatable hyperlipidic diets (CH). The
animals received these diets from 30th to 60th days of life (30-60), from 30th to 90th days of life (30-90), or from 60th to 90th days of life (60-90). Values are means
± standard error of the mean of 10 animals. Values in the same row with different superscript letters are significantly different from one another at p < 0.05
(Tukey’s test)

Table 6 Brain glucose oxidation (μmol/g tissue/h)

C H CH

Glucose(μmol/g tissue/h) 30-60 0.66 ± 0.07a 0.71 ± 0.06a 0.71 ± 0.04a

60-90 0.63 ± 0.07a 0.60 ± 0.10a 0.71 ± 0.07a

30-90 0.63 ± 0.07a 0.70 ± 0.11a 0.77 ± 0.12a

Glucose + Insulin(μmol/g tissue/h) 30-60 0.68 ± 0.06a 0.56 ± 0.06a 0.52 ± 0.04a

60-90 0.57 ± 0.06a 0.55 ± 0.11a 0.57 ± 0.06a

30-90 0.57 ± 0.06a 0.81 ± 0.09a 0.61 ± 0.11a

Control rats (C), rats treated with palatable hyperlipidic diet (H) and rats treated with food cycles alternating chow and palatable hyperlipidic diets (CH). The
animals received these diets from 30th to 60th days of life (30-60), from 30th to 90th days of life (30-90), or from 60th to 90th days of life (60-90). Values are means
± standard error of the mean of 10 animals. Values in the same row with different superscript letters are significantly different from one another at p < 0.05
(Tukey’s test)
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increased gradually up to 60 days of life and was main-
tained at similar and stable levels until at least 160 days
of life.
In summary, according to these findings, both the

continuous intake of a palatable hyperlipidic diet and
alternation of a high-fat intake with periods of chow
intake increased the body adiposity in rats, which was
independent from the duration of their administration
and the age at which the altered diet was begun. In

contrast, these diets caused hyperglycemia and affected
brain metabolism when they were begun at an early age.
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