33,126 research outputs found

    Localization properties of a tight-binding electronic model on the Apollonian network

    Get PDF
    An investigation on the properties of electronic states of a tight-binding Hamiltonian on the Apollonian network is presented. This structure, which is defined based on the Apollonian packing problem, has been explored both as a complex network, and as a substrate, on the top of which physical models can defined. The Schrodinger equation of the model, which includes only nearest neighbor interactions, is written in a matrix formulation. In the uniform case, the resulting Hamiltonian is proportional to the adjacency matrix of the Apollonian network. The characterization of the electronic eigenstates is based on the properties of the spectrum, which is characterized by a very large degeneracy. The 2π/32\pi /3 rotation symmetry of the network and large number of equivalent sites are reflected in all eigenstates, which are classified according to their parity. Extended and localized states are identified by evaluating the participation rate. Results for other two non-uniform models on the Apollonian network are also presented. In one case, interaction is considered to be dependent of the node degree, while in the other one, random on-site energies are considered.Comment: 7pages, 7 figure

    Near-barrier Fusion Induced by Stable Weakly Bound and Exotic Halo Light Nuclei

    Get PDF
    The effect of breakup is investigated for the medium weight 6^{6}Li+59^{59}Co system in the vicinity of the Coulomb barrier. The strong coupling of breakup/transfer channels to fusion is discussed within a comparison of predictions of the Continuum Discretized Coupled-Channels model which is also applied to 6^{6}He+59^{59}Co a reaction induced by the borromean halo nucleus 6^{6}He.Comment: 6 pages, 3 figures. A talk given at the FUSION06: International Conference on Reaction Mechanisms and Nuclear Structure at the Coulomb barrier, March 19-23, 2006, San Servolo, Venezia, Ital

    PRELIMINARY RESULTS OF LARGE EDDY SIMULATIONS OF A HYDROCYCLONE

    Get PDF
    Subgrid-scale modeling, which characterizes Large Eddy Simulation (LES), has been used to predict the behavior of a water-fed hydrocyclone operating without an air core. The governing equations were solved by a fractional step method on a staggered grid. The Smagorinsky subgrid-scale model was employed to account for turbulent effects. Numerical results actually capture the main features of the flow pattern and agree reasonably well with experiments, suggesting that LES represents an interesting alternative to classical turbulence models when applied to the numerical solution of fluid flows within hydrocyclones
    corecore