40,216 research outputs found
Three path interference using nuclear magnetic resonance: a test of the consistency of Born's rule
The Born rule is at the foundation of quantum mechanics and transforms our
classical way of understanding probabilities by predicting that interference
occurs between pairs of independent paths of a single object. One consequence
of the Born rule is that three way (or three paths) quantum interference does
not exist. In order to test the consistency of the Born rule, we examine
detection probabilities in three path intereference using an ensemble of
spin-1/2 quantum registers in liquid state nuclear magnetic resonance (LSNMR).
As a measure of the consistency, we evaluate the ratio of three way
interference to two way interference. Our experiment bounded the ratio to the
order of , and hence it is consistent with Born's rule.Comment: 11 pages, 4 figures; Improved presentation of figures 1 and 4,
changes made in section 2 to better describe the experiment, minor changes
throughout, and added several reference
Information-Entropic Measure of Energy-Degenerate Kinks in Two-Field Models
We investigate the existence and properties of kink-like solitons in a class
of models with two interacting scalar fields. In particular, we focus on models
that display both double and single-kink solutions, treatable analytically
using the Bogomol'nyi--Prasad--Sommerfield bound (BPS). Such models are of
interest in applications that include Skyrmions and various
superstring-motivated theories. Exploring a region of parameter space where the
energy for very different spatially-bound configurations is degenerate, we show
that a newly-proposed momentum-space entropic measure called Configurational
Entropy (CE) can distinguish between such energy-degenerate spatial profiles.
This information-theoretic measure of spatial complexity provides a
complementary perspective to situations where strictly energy-based arguments
are inconclusive
Thermal entanglement witness for materials with variable local spin lengths
We show that the thermal entanglement in a spin system using only magnetic
susceptibility measurements is restricted to the insulator materials. We
develop a generalization of the thermal entanglement witness that allows us to
get information about the system entanglement with variable local spin lengths
that can be used experimentally in conductor or insulator materials. As an
application, we study thermal entanglement for the half-filled Hubbard model
for linear, square and cubic clusters. We note that it is the itinerancy of
electrons that favors the entanglement. Our results suggest a weak dependence
between entanglement and external spin freedom degrees.Comment: 4 pages, 3 figure
de Broglie-Proca and Bopp-Podolsky massive photon gases in cosmology
We investigate the influence of massive photons on the evolution of the
expanding universe. Two particular models for generalized electrodynamics are
considered, namely de Broglie-Proca and Bopp-Podolsky electrodynamics. We
obtain the equation of state (EOS) for each case using
dispersion relations derived from both theories. The EOS are inputted into the
Friedmann equations of a homogeneous and isotropic space-time to determine the
cosmic scale factor . It is shown that the photon non-null mass does not
significantly alter the result valid for a massless photon
gas; this is true either in de Broglie-Proca's case (where the photon mass
is extremely small) or in Bopp-Podolsky theory (for which is extremely
large).Comment: 8 pages, 2 figures; v2 matches the published versio
Diversidade de estirpes do gĂȘnero Burkholderia em solos do cerrado brasileiro baseado no sequenciamento do gene ribossomal 16S.
bitstream/item/71519/1/ID-30988.pd
- âŠ