21 research outputs found

    Fluorescence analysis allows to predict the oxidative capacity of humic quinones in dissolved organic matter: implication for pollutant degradation

    Get PDF
    AbstractDissolved organic matter (DOM) controls the degradation and sequestration of aquatic pollutants and, in turn, water quality. In particular, pollutant degradation is performed by oxidant species that are generated by exposure of DOM to solar light, yet, since DOM is a very complex mixture of poorly known substances, the relationships between potential oxidant precursors in DOM and their oxydative capacity is poorly known. Here, we hypothesized that production of oxidant species could be predicted using fluorescence analysis. We analysed water samples from an alluvial plain by fluorescence spectroscopy; the three-dimensional spectra were then decomposed into seven individual components using a multi-way algorithm. Components include a protein-like fluorophore, e.g. tryptophan-like and tyrosine-like, three humic fluorophores, 2-naphthoxyacetic acid, and a by-product. We compared component levels with the ability of water samples to generate reactive species under solar light. The results show a strong correlation between reactive species production and the intensity of two humic-like fluorophores assigned to reduced quinones. Monitoring these fluorophores should thus allow to predict the ability of DOM degradation of pollutants in surface waters

    Do DOM optical parameters improve the prediction of copper availability in vineyard soils?

    Get PDF
    International audienceAccumulation of copper (Cu) in soils due to the application of fungicides may be toxic for organisms and hence affect winegrowing sustainability. Soil parameters such as pH and dissolved organic matter (DOM) are known to affect the availability of Cu. In this study, we investigated the contribution of chromophoric and fluorescent DOM properties to the prediction of Cu availability in 18 organic vineyard soils in the Bordeaux winegrowing area (France). The DOM parameters, assessed through absorbance and fluorescence analyses, and proxies for Cu availability (total soluble Cu and free ionic Cu2+) were measured in 0.01 M KCl extracts. Total soluble Cu (CuKCl) varied 23-fold while free ionic Cu2+ varied by a factor of 4600 among the soils. DOC concentrations were similar among the soils, but the samples differed in the quality of DOM as assessed by optical spectroscopy. Multilinear regression models with and without DOM quality parameters were investigated to predict Cu availability. The best model for CuKCl successfully explained 83% of variance and included pH, CuT, and two DOM fluorescence quality indices, the FI fluorescence index, which distinguishes between microbial and higher plant origins, and the HIX humification index. For the prediction of Cu2+, pH alone explained 88% of variance and adding DOM parameters did not improve modelling. The two Cu availability proxies were related to pH. This study confirms the prominent role of pH in Cu availability and underlines the importance of DOM quality to better predict Cu solubilit

    Changes over time in organic matter dynamics and copper solubility in a vineyard soil after incorporation of cover crop residues: Insights from a batch experiment

    Get PDF
    Cover crops (CCs) are increasingly used in viticulture because they benefit the soil and the environment in many ways. This study investigated the extent to which the incorporation of CC residues altered organic matter (OM) and Cu dynamics in a Cu-contaminated vineyard topsoil. A 92-day incubation period was used to monitor changes over time in carbon mineralization, carbon hydrolytic enzyme activity, concentration and optical properties of dissolved organic matter (DOM), and Cu solubility after the addition (or not) of two CC residues, oat or faba bean. The results revealed that adding CCs transitorily increased the concentration of DOM in soil solution, as well as the activity of C hydrolytic enzymes and C mineralization rates. DOM content was approximately two orders of magnitude higher in CC-amended soils than in the control soil on day 0, after which it gradually decreased to reach concentrations similar to those measured in the control soil on day 92. Analyses of DOM optical properties showed that its molecular weight and degree of humification increased over time with a decrease in its concentration. The close relationship between DOM and Cu concentrations in the soil solution suggests that degradation of CCs releases soluble forms of C capable of complexing and solubilizing Cu, and hence that incorporating CC residues can transitorily increase the solubility of Cu in vineyard topsoils. Despite their different C:N ratios, oat and faba bean had almost the same effect on Cu dynamics, implying that C inputs played a prominent role in explaining the interactions between OM and Cu within the timeframe of our experiment. In conclusion, this study enabled recommendations on how to mitigate the risk of Cu ecotoxicity associated with incorporating CCs in Cu-contaminated vineyard soils

    Sampling terrigenous diffuse sources in watercourse: Influence of land use and hydrological conditions on dissolved organic matter characteristics

    No full text
    International audienceDiffuse and point sources of dissolved organic matter (DOM) in streams influence its composition, interactions and fate in the aquatic ecosystem. These inputs can be very numerous at the scale of a watershed, and their identification remains a challenge, especially for diffuse sources related to land use. The complexity of the transfer mechanisms and the reactivity of DOM throughout the soil-water column continuum raise questions about the sampling of diffuse sources in watercourses. To answer this issue, we compared the characteristics of soil-extracted DOM influenced by a particular land use (homogenous sub-catchment of forest and vineyard) and DOM collected from the watercourse adjacent to the soil samples. A 28-day incubation experiment of soil extracts was designed to remove the labile fraction of DOM. During the first 3 days, between 40 and 70 %of the DOC mass was lost for both types of soils. A set of optical indicators (UV–Visible, EEM fluorescence and HPSEC/UV-fluorescence) showed that the labile fraction was mostly composed by low (10 kDa) protein-like molecules. At the end of the incubation, soil-extracted DOMwas mainly composed of medium molecules (1–10 kDa) associated to terrigenous humic-like compounds. Its optical and size molecular signature tended towards that in the adjacent watercourses and was specific to land use.However, the characteristics of DOMin watercourses was also influenced by the hydrological conditions, probably due to a transfer of top soil DOM during high water periods and both deep soil and autochthonous DOM during low water periods. These results were obtained by a set of indicators, including novel ones derived from HPSEC/UV-fluorescence. Finally, this study demonstrated that it is possible to sample the DOM representative of a land use directly in the river downstream of the homogeneous sub-basin by multiplying the samples during contrasting hydrological conditions

    New insights into detecting alizarin from autofluorescence in marked glass eels

    Get PDF
    International audienceAlizarin detection in fish fins is extensively employed because it is easy to use. However, in eels, the eelGFP fluorescent protein may impede the detection of the fluorescent markers in the eel tissues. The study tests the effectiveness of three of the most up-to-date alizarin-detecting technologies on the living body and fins of European glass eels ( Anguilla anguilla L.). The findings demonstrated that the control group had a high autofluorescence at alizarin and eelGFP maxima bands. With fluorescence reflectance imaging (FRI), the eel living body autofluorescence impeded the detection of the marked eels. In contrast with experimental excitation-emission-matrix (EEM) fluorescence analyses, 99% of the marked eels were correctly assigned to their group from fluorescence analyses of their fin cellular contents. With epifluorometry (EPI), 100% of the marked eels were detected with the caudal fin tips when excited at 450–490 nm wavelengths due to a weaker autofluorescence signal. EEM and FRI assays unveiled an average fluorescence quenching 60% and 44% of the marked group respectively, in the alizarin and eelGFP maxima bands. The fluorescence quenching observed is discussed. Results will benefit experimental design by examining autofluorescence effects on mark detection and the development of non-invasive detection methods in this critically endangered species

    Dynamics of organic matter in the Seine Estuary (France): Bulk and structural approaches

    Get PDF
    Estuaries are important ecosystems from environmental and economical point of views and are the place of numerous transformations of organic matter (OM) during the transfer from land to the ocean. The dynamics of OM in estuarine systems is complex and was only rarely investigated at the structural or molecular level, even though OM transformation in the estuarine aquatic and sediment compartments involves processes taking place at this level. The aim of this study was to constrain the sources and fate of the OM in the Seine Estuary, one of the largest estuaries in France. The spatiotemporal dynamics of the OM along the estuary was investigated by comparing the bulk (elemental and isotopic composition) and structural (solid state C-13 nuclear magnetic resonance) features of the different pools of OM - dissolved OM (DOM), particulate OM (POM) and sediment OM collected during five sampling campaigns. Reverse osmosis coupled with electrodialysis (RO/ED) was used to concentrate and isolate DOM, yielding an average organic carbon recovery of 59% (+/- 15%). RO/ED had a limited effect on DOM properties, DOM showing > 75% of similarity with initial estuarine samples based on 3D fluorescence measurements. Bulk and structural analyses of DOM, POM and sedimentary OM showed that OM is mainly of aquatic origin in the Seine Estuary, regardless the OM pool. Nevertheless, significant differences in chemical composition between the three OM pools were observed: higher C/N ratios, carbohydrate, lipid and protein content as well as lower char and lignin contents in DOM than in the other two compartments. Spatial variations of OM properties, for POM and to a lesser extent DOM, were observed along the Seine Estuary based on delta C-13 and Delta C-14 analyses and C-13 NMR-derived protein and lipid contents, showing the transition from a riverine to a marine-dominated system. In the mixing zone of the estuary, the Delta C-14 composition of the sediment OM was related to the tidal strength, with strong tides leading to the resuspension of recent sediment OM and weak tides allowing the deposition of recent aquatic OM. Altogether, the combination of bulk and structural techniques showed that the Seine Estuary OM quality is mainly related to the compartment (DOM/POM/sediment) and to a lesser extent to the sampling zone (upstream/maximum turbidity zone/downstream). The approach proposed for the characterization of the Seine Estuary OM could be applied to other estuaries, allowing a better understanding of the complex OM dynamics in such ecosystems
    corecore