230 research outputs found

    The concept of "compartment allergy": prilocaine injected into different skin layers

    Get PDF
    We herein present a patient with delayed-type allergic hypersensitivity against prilocaine leading to spreading eczematous dermatitis after subcutaneous injections for local anesthesia with prilocaine. Prilocaine allergy was proven by positive skin testing and subcutaneous provocation, whereas the evaluation of other local anesthetics - among them lidocaine, articaine and mepivacaine - did not exhibit any evidence for cross-reactivity

    Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection

    Get PDF
    Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology. © 2013 Kader et al

    Systemic Immune Activation in HIV Infection Is Associated with Decreased MDC Responsiveness to TLR Ligand and Inability to Activate Naive CD4 T-Cells

    Get PDF
    HIV infection is characterized by ineffective anti-viral T-cell responses and impaired dendritic cell (DC) functions, including response to Toll-Like Receptor (TLR) ligands. Because TLR responsiveness may affect a host's response to virus, we examined TLR ligand induced Myeloid and Plasmacytoid DC (MDC and PDC) activation of naïve T-cells in HIV+ subjects.Freshly purified MDC and PDC obtained from HIV+ subjects and healthy controls were cultured in the presence and absence of TLR ligands (poly I∶C or R-848). We evaluated indices of maturation/activation (CD83, CD86, and HLA-DR expression), cytokine secretion (IFN-alpha and IL-6), and ability to activate allogeneic naïve CD4 T-cells to secrete IFN-gamma and IL-2.MDC from HIV+ subjects had increased spontaneous IL-6 production and increased CD83 and CD86 expression when compared to MDC of controls. MDC IL-6 expression was associated with plasma HIV level. At the same time, poly I∶C induced HLA-DR up-regulation on MDC was reduced in HIV+ persons when compared to controls. The latter finding was associated with impaired ability of MDC from HIV+ subjects to activate allogeneic naïve CD4 T-cells. PDC from HIV+ persons had increased spontaneous and TLR ligand induced IL-6 expression, and increased HLA-DR expression at baseline. The latter was associated with an intact ability of HIV PDC to activate allogeneic naïve CD4 T-cells.These results have implications for the ability of the HIV+ host to form innate and adaptive responses to HIV and other pathogens

    The IL-1-Like Cytokine IL-33 Is Constitutively Expressed in the Nucleus of Endothelial Cells and Epithelial Cells In Vivo: A Novel ‘Alarmin’?

    Get PDF
    BACKGROUND: Interleukin-33 (IL-33) is an IL-1-like cytokine ligand for the IL-1 receptor-related protein ST2, that activates mast cells and Th2 lymphocytes, and induces production of Th2-associated cytokines in vivo. We initially discovered IL-33 as a nuclear factor (NF-HEV) abundantly expressed in high endothelial venules from lymphoid organs, that associates with chromatin and exhibits transcriptional regulatory properties. This suggested that, similarly to IL-1alpha and chromatin-associated cytokine HMGB1, IL-33 may act as both a cytokine and a nuclear factor. Although the activity of recombinant IL-33 has been well characterized, little is known yet about the expression pattern of endogenous IL-33 in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that IL-33 is constitutively and abundantly expressed in normal human tissues. Using a combination of human tissue microarrays and IL-33 monoclonal and polyclonal antibodies, we found that IL-33 is a novel nuclear marker of the endothelium widely expressed along the vascular tree. We observed abundant nuclear expression of IL-33 in endothelial cells from both large and small blood vessels in most normal human tissues, as well as in human tumors. In addition to endothelium, we also found constitutive nuclear expression of IL-33 in fibroblastic reticular cells of lymphoid tissues, and epithelial cells of tissues exposed to the environment, including skin keratinocytes and epithelial cells of the stomach, tonsillar crypts and salivary glands. CONCLUSIONS/SIGNIFICANCE: Together, our results indicate that, unlike inducible cytokines, IL-33 is constitutively expressed in normal human tissues. In addition, they reveal that endothelial cells and epithelial cells constitute major sources of IL-33 in vivo. Based on these findings, we speculate that IL-33 may function, similarly to the prototype 'alarmin' HMGB1, as an endogenous 'danger' signal to alert the immune system after endothelial or epithelial cell damage during trauma or infection

    Topographical and Biological Evidence Revealed FTY720-Mediated Anergy-Polarization of Mouse Bone Marrow-Derived Dendritic Cells In Vitro

    Get PDF
    Abnormal inflammations are central therapeutic targets in numerous infectious and autoimmune diseases. Dendritic cells (DCs) are involved in these inflammations, serving as both antigen presenters and proinflammatory cytokine providers. As an immuno-suppressor applied to the therapies of multiple sclerosis and allograft transplantation, fingolimod (FTY720) was shown to affect DC migration and its crosstalk with T cells. We posit FTY720 can induce an anergy-polarized phenotype switch on DCs in vitro, especially upon endotoxic activation. A lipopolysaccharide (LPS)-induced mouse bone marrow-derived dendritic cell (BMDC) activation model was employed to test FTY720-induced phenotypic changes on immature and mature DCs. Specifically, methods for morphology, nanostructure, cytokine production, phagocytosis, endocytosis and specific antigen presentation studies were used. FTY720 induced significant alterations of surface markers, as well as decline of shape indices, cell volume, surface roughness in LPS-activated mature BMDCs. These phenotypic, morphological and topographical changes were accompanied by FTY720-mediated down-regulation of proinflammatory cytokines, including IL-6, TNF-α, IL-12 and MCP-1. Together with suppressed nitric oxide (NO) production and CCR7 transcription in FTY720-treated BMDCs with or without LPS activation, an inhibitory mechanism of NO and cytokine reciprocal activation was suggested. This implication was supported by the impaired phagocytotic, endocytotic and specific antigen presentation abilities observed in the FTY720-treated BMDCs. In conclusion, we demonstrated FTY720 can induce anergy-polarization in both immature and LPS-activated mature BMDCs. A possible mechanism is FTY720-mediated reciprocal suppression on the intrinsic activation pathway and cytokine production with endpoint exhibitions on phagocytosis, endocytosis, antigen presentation as well as cellular morphology and topography

    Variants of C-C Motif Chemokine 22 (CCL22) Are Associated with Susceptibility to Atopic Dermatitis: Case-Control Studies

    Get PDF
    Atopic dermatitis (AD) is a common inflammatory skin disease caused by multiple genetic and environmental factors. AD is characterized by the local infiltration of T helper type 2 (Th2) cells. Recent clinical studies have shown important roles of the Th2 chemokines, CCL22 and CCL17 in the pathogenesis of AD. To investigate whether polymorphisms of the CCL22 gene affect the susceptibility to AD, we conducted association studies and functional studies of the related variants. We first resequenced the CCL22 gene and found a total of 39 SNPs. We selected seven tag SNPs in the CCL22 gene, and conducted association studies using two independent Japanese populations (1st population, 916 cases and 1,032 controls; 2nd population 1,034 cases and 1,004 controls). After the association results were combined by inverse variance method, we observed a significant association at rs4359426 (meta-analysis, combined P = 9.6×10−6; OR, 0.74; 95% CI, 0.65–0.85). Functional analysis revealed that the risk allele of rs4359426 contributed to higher expression levels of CCL22 mRNA. We further examined the allelic differences in the binding of nuclear proteins by electrophoretic mobility shift assay. The signal intensity of the DNA-protein complex derived from the G allele of rs223821, which was in absolute LD with rs4359426, was higher than that from the A allele. Although further functional analyses are needed, it is likely that related variants play a role in susceptibility to AD in a gain-of-function manner. Our findings provide a new insight into the etiology and pathogenesis of AD

    Thymic stromal lymphopoietin (TSLP) is associated with allergic rhinitis in children with asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic rhinitis (AR) affects up to 80% of children with asthma and increases asthma severity. Thymic stromal lymphopoietin (TSLP) is a key mediator of allergic inflammation. The role of the TSLP gene (<it>TSLP</it>) in the pathogenesis of AR has not been studied.</p> <p>Objective</p> <p>To test for associations between variants in <it>TSLP</it>, <it>TSLP</it>-related genes, and AR in children with asthma.</p> <p>Methods</p> <p>We genotyped 15 single nucleotide polymorphisms (SNPs) in <it>TSLP, OX40L, IL7R</it>, and <it>RXRα </it>in three independent cohorts: 592 asthmatic Costa Rican children and their parents, 422 nuclear families of North American children with asthma, and 239 Swedish children with asthma. We tested for associations between these SNPs and AR. As we previously reported sex-specific effects for <it>TSLP</it>, we performed overall and sex-stratified analyses. We additionally performed secondary analyses for gene-by-gene interactions.</p> <p>Results</p> <p>Across the three cohorts, the T allele of <it>TSLP </it>SNP rs1837253 was undertransmitted in boys with AR and asthma as compared to boys with asthma alone. The SNP was associated with reduced odds for AR (odds ratios ranging from 0.56 to 0.63, with corresponding Fisher's combined P value of 1.2 × 10<sup>-4</sup>). Our findings were significant after accounting for multiple comparisons. SNPs in <it>OX40L, IL7R</it>, and <it>RXRα </it>were not consistently associated with AR in children with asthma. There were nominally significant interactions between gene pairs.</p> <p>Conclusions</p> <p><it>TSLP </it>SNP rs1837253 is associated with reduced odds for AR in boys with asthma. Our findings support a role for <it>TSLP </it>in the pathogenesis of AR in children with asthma.</p

    Impact of HIV on Cell Survival and Antiviral Activity of Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) are important mediators of innate immunity that act mainly through secretion of interferon (IFN)-α. Previous studies have found that these cells can suppress HIV in vitro; additionally, pDCs have been shown to be severely reduced in the peripheral blood of HIV-infected individuals. In the present study, we sought to determine the ability of pDCs to directly suppress viral replication ex vivo and to delineate the potential mechanisms whereby pDCs are depleted in HIV-infected individuals. We demonstrate that activated pDCs strongly suppress HIV replication in autologous CD4(+) T cells via a mechanism involving IFN-α as well as other antiviral factors. Of note, unstimulated pDCs from infected individuals who maintain low levels of plasma viremia without antiretroviral therapy were able to suppress HIV ex vivo via a mechanism requiring cell-to-cell contact. Our data also demonstrate that death of pDCs by both apoptosis and necrosis is induced by fusion of HIV with pDCs. Taken together, our data suggest that pDCs play an important role in the control of HIV replication and that high levels of viral replication in vivo are associated with pDC cell death via apoptosis and necrosis. Elucidation of the mechanism by which pDCs suppress HIV replication in vivo may have clinically relevant implications for future therapeutic strategies

    Directional Secretory Response of Double Stranded RNA-Induced Thymic Stromal Lymphopoetin (TSLP) and CCL11/Eotaxin-1 in Human Asthmatic Airways

    Get PDF
    Background Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Methods Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Results Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. Conclusions There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations
    corecore