5,824 research outputs found

    Copolymer adsorption kinetics at a selective liquid-liquid interface: Scaling theory and computer experiment

    Full text link
    We consider the adsorption kinetics of a regular block-copolymer of total length NN and block size MM at a selective liquid-liquid interface in the limit of strong localization. We propose a simple analytic theory based on scaling considerations which describes the relaxation of the initial coil into a flat-shaped layer. The characteristic times for attaining equilibrium values of the gyration radius components perpendicular and parallel to the interface are predicted to scale with chain length NN and block length MM as τM1+2ν\tau_{\perp} \propto M^{1+2\nu} (here ν0.6\nu\approx 0.6 is the Flory exponent) and as τN2\tau_{\parallel} \propto N^2, although initially the rate of coil flattening is expected to decrease with block size as M1\propto M^{-1}. Since typically NMN\gg M for multiblock copolymers, our results suggest that the flattening dynamics proceeds faster perpendicular rather than parallel to the interface. We also demonstrate that these scaling predictions agree well with the results of extensive Monte Carlo simulations of the localization dynamics.Comment: 4 pages, 4 figures, submited to Europhys. Let

    Disturbance-diversity relationships in two lakes of similar nutrient chemistry but contrasting disturbance regimes

    Get PDF
    Phytoplankton diversity was studied in two North German lakes of comparable nutrient chemistry but different exposure to winds. In both lakes, phytoplankton was primarily N-limited but diatoms were Si-limited. Plußsee had a very constant mixing depth during summer, while week-to-week changes of several meters were quite common in the more exposed Behler See. In Plußsee, phytoplankton biomass during summer came closer to the carrying capacity as defined by the available total N. In Plußsee there was a marked decline of diversity during the summer maximum of biomass, while this decline was less pronounced in Behler See. It is concluded that disturbances which prevented phytoplankton from reaching the carrying capacity also maintained a high level of diversity. A negative response of diversity to undisturbed conditions became apparent, after phytoplankton biomass had exceeded about 5% of the carrying capacity

    Plankton ecology: The past two decades of progress

    Get PDF
    This is a selected account of recent developments in plankton ecology. The examples have been chosen for their degree of innovation during the past two decades and for their general ecological importance. They range from plankton autecology over interactions between populations to community ecology. The autecology of plankton is represented by the hydromechanics of plankton (the problem of life in a viscous environment) and by the nutritional ecology of phyto- and zooplankton. Population level studies are represented by competition, herbivory (grazing), and zooplankton responses to predation. Community ecology is represented by the debate about bottom- up vs. top-down control of community organization, by the PEG model of seasonal plankton succession, and by the recent discovery of the microbial food web

    Localization transition of random copolymers at interfaces

    Full text link
    We consider adsorption of random copolymer chains onto an interface within the model of Garel et al. Europhysics Letters 8, 9 (1989). By using the replica method the adsorption of the copolymer at the interface is mapped onto the problem of finding the ground state of a quantum mechanical Hamiltonian. To study this ground state we introduce a novel variational principle for the Green's function, which generalizes the well-known Rayleigh-Ritz method of Quantum Mechanics to nonstationary states. Minimization with an appropriate trial Green's function enables us to find the phase diagram for the localization-delocalization transition for an ideal random copolymer at the interface.Comment: 5 page

    Monte Carlo simulations of random copolymers at a selective interface

    Full text link
    We investigate numerically using the bond--fluctuation model the adsorption of a random AB--copolymer at the interface between two solvents. From our results we infer several scaling relations: the radius of gyration of the copolymer in the direction perpendicular to the interface (RgzR_{gz}) scales with χ\chi, the interfacial selectivity strength, as Rgz=Nνf(Nχ)R_{gz}=N^{\nu}f(\sqrt{N}\chi) where ν\nu is the usual Flory exponent and NN is the copolymer's length; furthermore the monomer density at the interface scales as χ2ν\chi^{2\nu} for small χ\chi. We also determine numerically the monomer densities in the two solvents and discuss their dependence on the distance from the interface.Comment: Latex text file appended with figures.tar.g

    Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms

    Get PDF
    Diatoms form large spring blooms in lakes and oceans, providing fuel for higher trophic levels at the start of the growing season. Some of the diatom blooms, however, are not grazed by filter-feeding zooplankton like Daphnia due to their large size. Several of these large diatoms are susceptible to chytrid infections. Zoospores of chytrids appeared to be excellent food for Daphnia, both in terms of size, shape, and quality (PUFAs and cholesterol). Thus, zoospores of chytrids can bridge the gap between inedible diatoms and Daphnia. In order to examine the effects of diatoms and chytrids on the survival of copepods, we performed one grazing and one survival experiment. The grazing experiment revealed that the diatom, Asterionella formosa, was not grazed by the copepod, Eudiaptomus gracilis, even after being infected by the chytrid Zygorhizidium planktonicum. However, carbon and nitrogen concentrations were significantly reduced by E. gracilis only when A. formosa was infected by Z. planktonicum, indicating that the chytrids might facilitate material transfer from inedible diatoms to the copepods. The survival experiment revealed that E. gracilis lived shorter with A. formosa than with the cryptophyta Cryptomonas pyrenoidifera. However, the survival of E. gracilis increased significantly in the treatment where A. formosa cells were infected by Z. planktonicum. Since E. gracilis could not graze A. formosa cells due to their large colonial forms, E. gracilis may acquire nutrients by grazing on the zoospores, and were so able to survive in the presence of the A. formosa. This provides new insights into the role of parasitic fungi in aquatic food webs, where chytrids may improve copepod survival during diatom blooms.

    Renormalization approach to many-particle systems

    Full text link
    This paper presents a renormalization approach to many-particle systems. By starting from a bare Hamiltonian H=H0+H1{\cal H}= {\cal H}_0 +{\cal H}_1 with an unperturbed part H0{\cal H}_0 and a perturbation H1{\cal H}_1,we define an effective Hamiltonian which has a band-diagonal shape with respect to the eigenbasis of H0{\cal H}_0. This means that all transition matrix elements are suppressed which have energy differences larger than a given cutoff λ\lambda that is smaller than the cutoff Λ\Lambda of the original Hamiltonian. This property resembles a recent flow equation approach on the basis of continuous unitary transformations. For demonstration of the method we discuss an exact solvable model, as well as the Anderson-lattice model where the well-known quasiparticle behavior of heavy fermions is derived.Comment: 11 pages, final version, to be published in Phys. Rev.

    Dominance of the planktonic diatom Thalassiosira minima in recent summers in the Bahia Blanca Estuary, Argentina

    Get PDF
    The diatom Thalassiosira minima was first recorded in the Baha Blanca Estuary in 1992. In 19921993 it exhibited a broad seasonal occurrence. A recent survey (20062007) showed a seasonal appearance restricted mainly to summer together with a greater relative abundance within the phytoplankton. A close connection was found with warmer, more saline and highly turbid conditions experienced in recent summers in the estuary. Whether these changes will impact the estuary trophic dynamics remains an open question

    Molecular mode of action and role of TP53 in the sensitivity to the novel epothilone sagopilone (ZK-EPO) in A549 non-small cell lung cancer cells

    Get PDF
    Sagopilone, an optimized fully synthetic epothilone, is a microtubule-stabilizing compound that has shown high in vitro and in vivo activity against a broad range of human tumor models. We analyzed the differential mechanism of action of sagopilone in non-small cell lung cancer cell lines in vitro. Sagopilone inhibited proliferation of non-small cell lung cancer cell lines at lower nanomolar concentration. The treatment with sagopilone caused strong disturbances of cellular cytoskeletal organization. Two concentration-dependent phenotypes were observed. At 2.5 nM sagopilone or 4 nM paclitaxel an aneuploid phenotype occur whereas a mitotic arrest phenotype was induced by 40 nM sagopilone or paclitaxel. Interestingly, treatment with 2.5 nM of sagopilone effectively inhibited cell proliferation, but - compared to high concentrations (40 nM) - only marginally induced apoptosis. Treatment with a high versus a low concentration of sagopilone or paclitaxel regulates a non-overlapping set of genes, indicating that both phenotypes substantially differ from each other. Genes involved in G2/M phase transition and the spindle assembly checkpoint, like Cyclin B1 and BUBR1 were upregulated by treatment with 40 nM sagopilone. Unexpectedly, also genes involved in DNA damage response were upregulated under that treatment. In contrast, treatment of A549 cells with a low concentration of sagopilone revealed an upregulation of direct transcriptional target genes of TP53, like CDKN1A, MDM2, GADD45A, FAS. Knockdown of TP53, which inhibited the transcriptional induction of TP53 target genes, led to a significant increase in apoptosis induction in A549 cells when treated with a low concentration of sagopilone. The results indicate that activation of TP53 and its downstream effectors like CDKN1A by low concentrations of sagopilone is responsible for the relative apoptosis resistance of A549 cells and might represent a mechanism of resistance to sagopilone

    Climate change effects on phytoplankton depend on cell size and food web structure

    Get PDF
    We investigated the effects of warming on a natural phytoplankton community from the Baltic Sea, based on six mesocosm experiments conducted 2005–2009. We focused on differences in the dynamics of three phytoplankton size groups which are grazed to a variable extent by different zooplankton groups. While small-sized algae were mostly grazer-controlled, light and nutrient availability largely determined the growth of medium- and large-sized algae. Thus, the latter groups dominated at increased light levels. Warming increased mesozooplankton grazing on medium-sized algae, reducing their biomass. The biomass of small-sized algae was not affected by temperature, probably due to an interplay between indirect effects spreading through the food web. Thus, under the higher temperature and lower light levels anticipated for the next decades in the southern Baltic Sea, a higher share of smaller phytoplankton is expected. We conclude that considering the size structure of the phytoplankton community strongly improves the reliability of projections of climate change effects
    corecore