9,986 research outputs found
Generation and purification of maximally-entangled atomic states in optical cavities
We present a probabilistic scheme for generating and purifying
maximally-entangled states of two atoms inside an optical cavity via no-photon
detection in the output cavity mode, where ideal detectors may not be required.
The intermediate mixed states can be continuously "filtered" so as to violate
Bell inequalities in a parametrized manner. The scheme relies on an additional
strong-driving field that yields unusual dynamics in cavity QED experiments,
simultaneously realizing Jaynes-Cummings and anti-Jaynes-Cummings interactions.Comment: 4 pages and 3 figure
Instantaneous Measurement of field quadrature moments and entanglement
We present a method of measuring expectation values of quadrature moments of
a multimode field through two-level probe ``homodyning''. Our approach is based
on an integral transform formalism of measurable probe observables, where
analytically derived kernels unravel efficiently the required field information
at zero interaction time, minimizing decoherence effects. The proposed scheme
is suitable for fields that, while inaccessible to a direct measurement, enjoy
one and two-photon Jaynes-Cummings interactions with a two-level probe, like
spin, phonon, or cavity fields. Available data from previous experiments are
used to confirm our predictions.Comment: 4 pages, no figures, modified version with experimental estimation
Selective interactions in trapped ions: state reconstruction and quantum logic
We propose the implementation of selective interactions of atom-motion
subspaces in trapped ions. These interactions yield resonant exchange of
population inside a selected subspace, leaving the others in a highly
dispersive regime. Selectivity allows us to generate motional Fock (and other
nonclassical) states with high purity out of a wide class of initial states,
and becomes an unconventional cooling mechanism when the ground state is
chosen. Individual population of number states can be distinctively measured,
as well as the motional Wigner function. Furthermore, a protocol for
implementing quantum logic through a suitable control of selective subspaces is
presented.Comment: 4 revtex4 pages and 2 eps figures. Submitted for publicatio
Fluctons
From the perspective of topological field theory we explore the physics
beyond instantons. We propose the fluctons as nonperturbative topological
fluctuations of vacuum, from which the self-dual domain of instantons is
attained as a particular case. Invoking the Atiyah-Singer index theorem, we
determine the dimension of the corresponding flucton moduli space, which gives
the number of degrees of freedom of the fluctons. An important consequence of
these results is that the topological phases of vacuum in non-Abelian gauge
theories are not necessarily associated with self-dual fields, but only with
smooth fields. Fluctons in different scenarios are considered, the basic
aspects of the quantum mechanical amplitude for fluctons are discussed, and the
case of gravity is discussed briefly
Measure of phonon-number moments and motional quadratures through infinitesimal-time probing of trapped ions
A method for gaining information about the phonon-number moments and the
generalized nonlinear and linear quadratures in the motion of trapped ions (in
particular, position and momentum) is proposed, valid inside and outside the
Lamb-Dicke regime. It is based on the measurement of first time derivatives of
electronic populations, evaluated at the motion-probe interaction time t=0. In
contrast to other state-reconstruction proposals, based on measuring Rabi
oscillations or dispersive interactions, the present scheme can be performed
resonantly at infinitesimal short motion-probe interaction times, remaining
thus insensitive to decoherence processes.Comment: 10 pages. Accepted in JPhys
Scalable quantum memory in the ultrastrong coupling regime
Circuit quantum electrodynamics, consisting of superconducting artificial
atoms coupled to on-chip resonators, represents a prime candidate to implement
the scalable quantum computing architecture because of the presence of good
tunability and controllability. Furthermore, recent advances have pushed the
technology towards the ultrastrong coupling regime of light-matter interaction,
where the qubit-resonator coupling strength reaches a considerable fraction of
the resonator frequency. Here, we propose a qubit-resonator system operating in
that regime, as a quantum memory device and study the storage and retrieval of
quantum information in and from the Z2 parity-protected quantum memory, within
experimentally feasible schemes. We are also convinced that our proposal might
pave a way to realize a scalable quantum random-access memory due to its fast
storage and readout performances.Comment: We have updated the title, abstract and included a new section on the
open-system dynamic
Operational multipartite entanglement classes for symmetric photonic qubit states
We present experimental schemes that allow to study the entanglement classes
of all symmetric states in multiqubit photonic systems. In addition to
comparing the presented schemes in efficiency, we will highlight the relation
between the entanglement properties of symmetric Dicke states and a recently
proposed entanglement scheme for atoms. In analogy to the latter, we obtain a
one-to-one correspondence between well-defined sets of experimental parameters
and multiqubit entanglement classes inside the symmetric subspace of the
photonic system.Comment: 5 pages, 1 figur
Degree of Quantumness in Quantum Synchronization
We introduce the concept of degree of quantumness in quantum synchronization,
a measure of the quantum nature of synchronization in quantum systems.
Following techniques from quantum information, we propose the number of
non-commuting observables that synchronize as a measure of quantumness. This
figure of merit is compatible with already existing synchronization
measurements, and it captures different physical properties. We illustrate it
in a quantum system consisting of two weakly interacting cavity-qubit systems,
which are coupled via the exchange of bosonic excitations between the cavities.
Moreover, we study the synchronization of the expectation values of the Pauli
operators and we propose a feasible superconducting circuit setup. Finally, we
discuss the degree of quantumness in the synchronization between two quantum
van der Pol oscillators
- …