792 research outputs found

    Early intervention and the vulnerable infant

    Get PDF
    The purpose of this paper was threefold: (1) to review the literature to identify the early life experiences and essentials of the environment necessary for optimizing development; (2) to analyze how this knowledge has been and can be applied to developing intervention programs for vulnerable infants; and (3) to evaluate the results being obtained by the programs already in existence. This survey focuses on studies concerned with children from birth to three years of age

    Extremely Luminous Far-infrared Sources (ELFS)

    Get PDF
    The Infrared Astronomical Satellite (IRAS) survey uncovered a class of Extremely Luminous Far Infrared Sources (ELFS), exhibiting luminosities up to and occasionally exceeding 10 to the 12th power L sub 0. Arguments are presented to show that sources with luminosities L equal to or greater than 3 x 10 to the 10th power L sub 0 may represent gas rich galaxies in collision. The more conventional explanation of these sources as sites of extremely active star formation fails to explain the observed low optical luminosities of ELFS as well as their high infrared excess. In contrast, a collisional model heats gas to a temperature of approx. 10 to the 6th power K where cooling takes place in the extreme ultraviolet. The UV is absorbed by dust and converted into far infrared radiation (FIR) without generation of appreciable optical luminosity. Gas recombination as it cools generates a Lyman alpha photon only once for every two extreme ultraviolet approx. 50eV photons emitted by the 10 to the 6th power gas. That accounts for the high infrared excess. Finally, the model also is able to explain the observed luminosity distribution of ELFS as well as many other traits

    The IRAS Revised Bright Galaxy Sample (RBGS)

    Full text link
    IRAS flux densities, redshifts, and infrared luminosities are reported for all sources identified in the IRAS Revised Bright Galaxy Sample (RBGS), a complete flux-limited survey of all extragalactic objects with total 60 micron flux density greater than 5.24 Jy, covering the entire sky surveyed by IRAS at Galactic latitude |b| > 5 degrees. The RBGS includes 629 objects, with a median (mean) sample redshift of 0.0082 (0.0126) and a maximum redshift of 0.0876. The RBGS supersedes the previous two-part IRAS Bright Galaxy Samples, which were compiled before the final ("Pass 3") calibration of the IRAS Level 1 Archive in May 1990. The RBGS also makes use of more accurate and consistent automated methods to measure the flux of objects with extended emission. Basic properties of the RBGS sources are summarized, including estimated total infrared luminosities, as well as updates to cross-identifications with sources from optical galaxy catalogs established using the NASA/IPAC Extragalactic Database (NED). In addition, an atlas of images from the Digitized Sky Survey with overlays of the IRAS position uncertainty ellipse and annotated scale bars is provided for ease in visualizing the optical morphology in context with the angular and metric size of each object. The revised bolometric infrared luminosity function, phi(L_ir), for infrared bright galaxies in the local Universe remains best fit by a double power law, phi(L_ir) ~ L_ir^alpha, with alpha = -0.6 (+/- 0.1), and alpha = -2.2 (+/- 0.1) below and above the "characteristic" infrared luminosity L_ir ~ 10^{10.5} L_solar, respectively. (Abridged)Comment: Accepted for publication in the Astronomical Journal. Contains 50 pages, 7 tables, 16 figures. Due to astro-ph space limits, only 1 of 26 pages of Figure 1, and 1 of 11 pages of Table 7, are included; full resolution Postscript files are available at http://nedwww.ipac.caltech.edu/level5/March03/IRAS_RBGS/Figures/ . Replacement: Corrected insertion of Fig. 15 (MethodCodes.ps) in LaTe

    Modelling the Spectral Energy Distribution of Compact Luminous Infrared Galaxies: Constraints from High Frequency Radio Data

    Full text link
    We have performed 23 GHz VLA observations of 7 compact, luminous infrared galaxies, selected to have evidence of starburst activity. New and published multi-frequency data are combined to obtain the spectral energy distributions of all 7 galaxies from the near-infrared to the radio (at 1.4 GHz). These SEDs are compared with new models, for dust enshrouded galaxies, which account for both starburst and AGN components. In all 7 galaxies the starburst provides the dominant contribution to the infrared luminosity; in 4 sources no contribution from an AGN is required. Although AGN may contribute up to 50 percent of the total far--infrared emission, the starbursts always dominate in the radio. The SEDs of most of our sources are best fit with a very high optical depth of (>=50) at 1 micron. The scatter in the far-infrared/radio correlation, found among luminous IRAS sources, is due mainly to the different evolutionary status of their starburst components. The short time-scale of the star formation process amplifies the delay between the far-infrared and radio emission. This becomes more evident at low radio frequencies (below about 1 GHz) where synchrotron radiation is the dominant process. In the far-infrared (at wavelengths shorter than 100 micron) an additional source of scatter is provided by AGN, where present. AGN may be detected in the near-infrared by the absence of the knee, typical of stellar photospheres. However, near-infrared data alone cannot constrain the level at which AGN contribute because the interpretation of their observed properties, in this wave-band, depends strongly on model parameters.Comment: 14 pages, accepted for publication in Astronomy and Astrophysic

    The size of NGC 4151 at 11.2 µm

    Get PDF
    The size of the emission region of NGC 4151 at 11.2 µm has been measured to be 0.16" + 0.04" (lσ). This size is in agreement with that expected from thermal emission from dust grains heated by a central luminosity source, but is inconsistent with nonthermal emission

    High-Redshift Dust Obscured Galaxies: A Morphology-Spectral Energy Distribution Connection Revealed by Keck Adaptive Optics

    Get PDF
    A simple optical to mid-IR color selection, R – [24]>14, i.e., f_ν(24 μm)/f_ν(R) ≳ 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z ~ 2 ± 0.5. Extreme mid-IR luminosities (L_(IR) > 10^(12-14)) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0."05-0."1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponential disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of ~1 kpc, circumstantial evidence for ongoing mergers

    The Spectral Energy Distribution and Infrared Luminosities of z ≈ 2 Dust-obscured Galaxies from Herschel and Spitzer

    Get PDF
    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L_(IR) > 10^(12) L_☉). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10^(11.6) L_☉ 10^(13) L_☉. The rest-frame near-IR (1-3 μm) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with "power-law" SEDs in the rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar "bump" in their rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 μm flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 μm flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ~25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 μm luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 μm luminosity (the IR8 = L_(IR)(8-1000 μm)/νL_ν(8 μm) parameter of Elbaz et al.). Instead of lying on the z = 1-2 "infrared main sequence" of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up versions of local ULIRGs in terms of 250/24 μm flux density ratio, and IR8, they tend to have cooler far-IR dust temperatures (20-40 K for DOGs versus 40-50 K for local ULIRGs) as measured by the rest-frame 80/115 μm flux density ratios (e.g., observed-frame 250/350 μm ratios at z = 2). DOGs that are not detected by Herschel appear to have lower observed-frame 250/24 μm ratios than the detected sample, either because of warmer dust temperatures, lower IR luminosities, or both

    When a DNA Triple helix melts: An analog of the Efimov state

    Get PDF
    The base sequences of DNA contain the genetic code and to decode it a double helical DNA has to open its base pairs. Recent studies have shown that one can use a third strand to identify the base sequences without opening the double helix but by forming a triple helix. It is predicted here that such a three chain system exhibits the unusual behaviour of the existence of a three chain bound state in the absence of any two being bound. This phenomenon is analogous to the Efimov state in three particle quantum mechanics. A scaling theory is used to justify the Efimov connection. Real space renormalization group (RG), and exact numerical calculations are used to validate the prediction of a biological Efimov effect.Comment: Replaced by the (almost) published version, except the word "curiouser
    • …
    corecore