176 research outputs found

    Il restauro della chiesa di Ognissanti: il barocco a Mantova. Storia e arte. Note sul restauro

    Get PDF
    Storia della chiesa di Ognissanti in Mantova alla luce dei documenti e dei nuovi restaur

    Topology Induced Spatial Bose-Einstein Condensation for Bosons on Star-Shaped Optical Networks

    Full text link
    New coherent states may be induced by pertinently engineering the topology of a network. As an example, we consider the properties of non-interacting bosons on a star network, which may be realized with a dilute atomic gas in a star-shaped deep optical lattice. The ground state is localized around the star center and it is macroscopically occupied below the Bose-Einstein condensation temperature T_c. We show that T_c depends only on the number of the star arms and on the Josephson energy of the bosonic Josephson junctions and that the non-condensate fraction is simply given by the reduced temperature T/T_c.Comment: 20 Pages, 5 Figure

    Bose-Einstein Condensation on inhomogeneous complex networks

    Full text link
    The thermodynamic properties of non interacting bosons on a complex network can be strongly affected by topological inhomogeneities. The latter give rise to anomalies in the density of states that can induce Bose-Einstein condensation in low dimensional systems also in absence of external confining potentials. The anomalies consist in energy regions composed of an infinite number of states with vanishing weight in the thermodynamic limit. We present a rigorous result providing the general conditions for the occurrence of Bose-Einstein condensation on complex networks in presence of anomalous spectral regions in the density of states. We present results on spectral properties for a wide class of graphs where the theorem applies. We study in detail an explicit geometrical realization, the comb lattice, which embodies all the relevant features of this effect and which can be experimentally implemented as an array of Josephson Junctions.Comment: 11 pages, 9 figure

    Quantum States of Topologically Massive Electrodynamics and Gravity

    Get PDF
    The free quantum states of topologically massive electrodynamics and gravity in 2+1 dimensions, are explicitly found. It is shown that in both theories the states are described by infrared-regular polarization tensors containing a regularization phase which depends on the spin. This is done by explicitly realizing the quantum algebra on a functional Hilbert space and by finding the Wightman function to define the scalar product on such a Hilbert space. The physical properties of the states are analyzed defining creation and annihilation operators. For both theories, a canonical and covariant quantization procedure is developed. The higher order derivatives in the gravitational lagrangian are treated by means of a preliminary Dirac procedure. The closure of the Poincar\'e algebra is guaranteed by the infrared-finiteness of the states which is related to the spin of the excitations through the regularization phase. Such a phase may have interesting physical consequences.Comment: 21 page, latex, no figure

    Chiral Dynamics and Fermion Mass Generation in Three Dimensional Gauge Theory

    Full text link
    We examine the possibility of fermion mass generation in 2+1- dimensional gauge theory from the current algebra point of view.In our approach the critical behavior is governed by the fluctuations of pions which are the Goldstone bosons for chiral symmetry breaking. Our analysis supports the existence of an upper critical number of Fermion flavors and exhibits the explicit form of the gap equation as well as the form of the critical exponent for the inverse correlation lenght of the order parameterComment: Latex,10 pages,DFUPG 70/9

    Dynamical delocalization of Majorana edge states by sweeping across a quantum critical point

    Full text link
    We study the adiabatic dynamics of Majorana fermions across a quantum phase transition. We show that the Kibble-Zurek scaling, which describes the density of bulk defects produced during the critical point crossing, is not valid for edge Majorana fermions. Therefore, the dynamics governing an edge state quench is nonuniversal and depends on the topological features of the system. Besides, we show that the localization of Majorana fermions is a necessary ingredient to guaranty robustness against defect production.Comment: Submitted to the Special Issue on "Dynamics and Thermalization in Isolated Quantum Many-Body Systems" in New Journal of Physics. Editors:M. Cazalilla, M. Rigol. New references and some typos correcte

    Confinement-Deconfinement Transition in 3-Dimensional QED

    Full text link
    We argue that, at finite temperature, parity invariant non-compact electrodynamics with massive electrons in 2+1 dimensions can exist in both confined and deconfined phases. We show that an order parameter for the confinement-deconfinement phase transition is the Polyakov loop operator whose average measures the free energy of a test charge that is not an integral multiple of the electron charge. The effective field theory for the Polyakov loop operator is a 2-dimensional Euclidean scalar field theory with a global discrete symmetry ZZ, the additive group of the integers. We argue that the realization of this symmetry governs confinement and that the confinement-deconfinement phase transition is of Berezinskii-Kosterlitz-Thouless type. We compute the effective action to one-loop order and argue that when the electron mass mm is much greater than the temperature TT and dimensional coupling e2e^2, the effective field theory is the Sine-Gordon model. In this limit, we estimate the critical temperature, Tcrit.=e2/8π(1−e2/12πm+
)T_{\rm crit.}=e^2/8\pi(1-e^2/12\pi m+\ldots).Comment: 11 pages, latex, no figure

    Oblique Confinement and Phase Transitions in Chern-Simons Gauge Theories

    Full text link
    We investigate non-perturbative features of a planar Chern-Simons gauge theory modeling the long distance physics of quantum Hall systems, including a finite gap M for excitations. By formulating the model on a lattice, we identify the relevant topological configurations and their interactions. For M bigger than a critical value, the model exhibits an oblique confinement phase, which we identify with Lauglin's incompressible quantum fluid. For M smaller than the critical value, we obtain a phase transition to a Coulomb phase or a confinement phase, depending on the value of the electromagnetic coupling.Comment: 8 pages, harvmac, DFUPG 91/94 and MPI-PhT/94-9

    Chiral Symmetry Breaking on the Lattice: a Study of the Strongly Coupled Lattice Schwinger Model

    Get PDF
    We revisit the strong coupling limit of the Schwinger model on the lattice using staggered fermions and the hamiltonian approach to lattice gauge theories. Although staggered fermions have no continuous chiral symmetry, they posses a discrete axial invari ance which forbids fermion mass and which must be broken in order for the lattice Schwinger model to exhibit the features of the spectrum of the continuum theory. We show that this discrete symmetry is indeed broken spontaneously in the strong coupling li mit. Expanding around a gauge invariant ground state and carefully considering the normal ordering of the charge operator, we derive an improved strong coupling expansion and compute the masses of the low lying bosonic excitations as well as the chiral co ndensate of the model. We find very good agreement between our lattice calculations and known continuum values for these quantities already in the fourth order of strong coupling perturbation theory. We also find the exact ground state of the antiferromag netic Ising spin chain with long range Coulomb interaction, which determines the nature of the ground state in the strong coupling limit.Comment: 24 pages, Latex, no figure

    Politics of nanotechnologies in food and agriculture

    Get PDF
    The chapter discusses the reasons for the delay in the regulatory intervention concerning nanotechnologies used in the agriculture and food sectors. The main finding is that unregulated introduction of nanoinnovation into the food system is due to the current neoliberal food policy and to the power struggles that characterize the economic, social and political dynamics within the global supply chain. Therefore, it is necessary to put the ‘question concerning technology’ at the center of the regulatory debate in order to implement a regulatory system able to face nanorisks. Which means looking at the way in which technology controls power relationships within society. Attention should be shifted from efficiency to power issues, and new technologies should be assessed from a political rather than an economic or ethical perspective
    • 

    corecore