289 research outputs found

    Molecular aspects of thyroid calcification

    Get PDF
    In thyroid cancer, calcification is mainly present in classical papillary thyroid carcinoma (PTC) and in medullary thyroid carcinoma (MTC), despite being described in benign lesions and in other subtypes of thyroid carcinomas. Thyroid calcifications are classified according to their diameter and location. At ultrasonography, microcalcifications appear as hyperechoic spots = 1 mm in diameter and can be named as stromal calcification, bone formation, or psammoma bodies (PBs), whereas calcifications > 1 mm are macrocalcifications. The mechanism of their formation is still poorly understood. Microcalcifications are generally accepted as a reliable indicator of malignancy as they mostly represent PBs. In order to progress in terms of the understanding of the mechanisms behind calcification occurring in thyroid tumors in general, and in PTC in particular, we decided to use histopathology as the basis of the possible cellular and molecular mechanisms of calcification formation in thyroid cancer. We explored the involvement of molecules such as runt-related transcription factor-2 (Runx-2), osteonectin/secreted protein acidic and rich in cysteine (SPARC), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteopontin (OPN) in the formation of calcification. The present review offers a novel insight into the mechanisms underlying the development of calcification in thyroid cancer.This research was funded by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério daCiência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” Funding: This research was funded by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). Additional funding by the European Regional Development Fund (ERDF) through the Operational Programme for Competitiveness and Internationalization—COMPETE2020; Portuguese national funds via FCT, under project POCI-01-0145-FEDER-016390: CANCEL STEM; and from the FCT, under the project POCI-01-0145-FEDER-031438: The other faces of telomerase: Looking beyond tumour immortalization (PDTC/MED_ONC/31438/2017). J.V. is funded with a research contract (CEECIND/00201/2017) by Fundação para a Ciência e a Tecnologia, Ministério da Ciência, Tecnologia e Ensino Superior (FCT). This research was funded by FEDER?Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020?Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT?Funda??o para a Ci?ncia e a Tecnologia/Minist?rio da Ci?ncia, Tecnologia e Inova??o in the framework of the project ?Institute for Research and Innovation in Health Sciences? (POCI-01-0145-FEDER-007274). Additional funding by the European Regional Development Fund (ERDF) through the Operational Programme for Competitiveness and Internationalization?COMPETE2020; Portuguese national funds via FCT, under project POCI-01-0145-FEDER-016390: CANCEL STEM; and from the FCT, under the project POCI-01-0145-FEDER-031438: The other faces of telomerase: Looking beyond tumour immortalization (PDTC/MED_ONC/31438/2017). J.V. is funded with a research contract (CEECIND/00201/2017) by Funda??o para a Ci?ncia e a Tecnologia, Minist?rio da Ci?ncia, Tecnologia e Ensino Superior (FCT)

    Cystic tumor of the atrioventricular node of the heart appears to be the heart equivalent of the solid cell nests (ultimobranchial rests) of the thyroid

    Get PDF
    We studied a series of 10 solid cell nests (SCNs) of the thyroid and a case of cystic tumor of the atrioventricular node (CTAVN) of the heart and reviewed the literature. The CTAVN and SCNs appeared as cystic and/or solid (squamoid) structures mainly composed of polygonal or oval cells (main cells) admixed with occasional clear cells (neuroendocrine and C cells). Main cells were immunoreactive for simple and stratified epithelial-type cytokeratins, epithelial membrane antigen, carcinoembryonic antigen, carbohydrate antigen 19.9, p63, bcl-2, and galectin-3. Neuroendocrine (and C) cells were positive for simple-type cytokeratins, carcinoembryonic antigen, calcitonin, chromogranin, synaptophysin, and thyroid transcription factor-1. Our data support the hypothesis that the CTAVN of the heart and the SCNs of the thyroid are identical structures that represent the same lesional process. The assumption that CTAVN is a ultimobranchial heterotopia fits with the known role of cardiac neural crest cells in cardiovascular development

    Identificação de genótipos de trigo irrigado em dois locais de Minas Gerais, no ano de 2010.

    Get PDF
    bitstream/item/62561/1/2011boletimdepesquisaonline79.pd

    Cure and discontinuation of treatment in a tuberculosis control state programme in Brazil: insights from dispensing data

    Get PDF
    Poster presented at the 45th ESCP Symposium on Clinical Pharmacy. 4-6 October 2016, Oslo, NorwayN/
    corecore