13,628 research outputs found

    On the quantumness of correlations in nuclear magnetic resonance

    Full text link
    Nuclear Magnetic Resonance (NMR) was successfully employed to test several protocols and ideas in Quantum Information Science. In most of these implementations the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this article we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogous of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrate how non-classical correlations of separable states may be used to simulate quantum dynamics. The results obtained are completely equivalent to the optical scenario, where entanglement (between two field modes) may be present

    Surface roughness and interfacial slip boundary condition for quartz crystal microbalances

    Get PDF
    The response of a quartz crystal microbalance (QCM) is considered using a wave equation for the substrate and the Navier-Stokes equations for a finite liquid layer under a slip boundary condition. It is shown that when the slip length to shear wave penetration depth is small, the first order effect of slip is only present in the frequency response. Importantly, in this approximation the frequency response satisfies an additivity relation with a net response equal to a Kanazawa liquid term plus an additional Sauerbrey "rigid" liquid mass. For the slip length to result in an enhanced frequency decrease compared to a no-slip boundary condition, it is shown that the slip length must be negative so that the slip plane is located on the liquid side of the interface. It is argued that the physical application of such a negative slip length could be to the liquid phase response of a QCM with a completely wetted rough surface. Effectively, the model recovers the starting assumption of additivity used in the trapped mass model for the liquid phase response of a QCM having a rough surface. When applying the slip boundary condition to the rough surface problem, slip is not at a molecular level, but is a formal hydrodynamic boundary condition which relates the response of the QCM to that expected from a QCM with a smooth surface. Finally, possible interpretations of the results in terms of acoustic reflectivity are developed and the potential limitations of the additivity result should vapour trapping occur are discussed

    Nonclassical correlation in NMR quadrupolar systems

    Full text link
    The existence of quantum correlation (as revealed by quantum discord), other than entanglement and its role in quantum-information processing (QIP), is a current subject for discussion. In particular, it has been suggested that this nonclassical correlation may provide computational speedup for some quantum algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been successfully used as a test bench for many QIP implementations, although it has also been continuously criticized for not presenting entanglement in most of the systems used so far. In this paper, we report a theoretical and experimental study on the dynamics of quantum and classical correlations in an NMR quadrupolar system. We present a method for computing the correlations from experimental NMR deviation-density matrices and show that, given the action of the nuclear-spin environment, the relaxation produces a monotonic time decay in the correlations. Although the experimental realizations were performed in a specific quadrupolar system, the main results presented here can be applied to whichever system uses a deviation-density matrix formalism.Comment: Published versio

    Hyaluronan density influences adhesion, morphology and migration of cancer cells

    Get PDF
    Hyaluronan (HA) is a linear non-sulfated glycosaminoglycan present in the extracellular matrix and known to modulate cell-cell and cell-ECM interactions. In cancer, the synthesis, degradation and signaling of HA is altered. For instance, its main receptor, CD44, is overexpressed in several types of cancer and has been correlated with disease progression through cancer cell proliferation, migration and chemoresistance. Herein, we investigated the behavior of breast cancer cells with different CD44 expression and invasion profile on HA density gradients. These gradients were achieved by deposition of colloidal gold (Au) on amino-functionalized surfaces at different ionic strengths and following binding of end-on thiol modified HA on the Au. At low HA density, small number of adherent round cells were found for all studied cell lines. Cells adherent to the areas with high HA density presented a spindle-like morphology. The differences were more pronounced for cells overexpressing CD44. These cells also form long filopodia when adhered on areas with middle and high HA density. Of note, colocalization of CD44 and actin was observed at the filopodias edges. Cell motility was also affected by the gradient – at low densities cells presented higher motility, which decreased with the increase of HA density. Besides this common trend, we observed differences among the studied cells. CD44 cells had shorter persistent length displacement than CD44 and CD44cells. Upon CD44 blockage, all types of cells (CD44++, CD44+, and CD44-) behave similarly . These results suggest that cells recognize HA gradients through CD44 receptors and that the HA density can be used to sort cells with different expression of this receptor.info:eu-repo/semantics/publishedVersio

    Cloud-based implementation of a SON radio resources planning system for mobile networks and integration in SaaS metric

    Get PDF
    In mobile network deployments of growing size, the optimum and fast planning of radio resources are a key task. Cloud services enable efficient and scalable implementation of procedures and algorithms. In this paper, a proof of concept implementation of a cloud-based network planning work pattern using Amazon Web Services (AWS) is presented, containing new and efficient radio resource planning algorithms for 3G, 4G and 5G systems. It extracts configuration and performance data from the network, enabling to accurately estimate cells coverage, identify neighboring cells and optimally plan scrambling codes (SCs) and physical cell identity (PCI) in 3G and 4G/5G networks, respectively. This implementation was integrated and is available in the commercial Metric Software-as-a-Service (SaaS) monitoring and planning tool. The cloud-based planning system is demonstrated in various canonical and realistic Universal Mobile Telecommunications System (UMTS) and Long Term Evolution (LTE) scenarios, and compared to an algorithm previously used by Metric. For a small LTE realistic scenario consisting of 9 sites and 23 cells, it takes less than 0.6 seconds to perform the planning. For an UMTS realistic scenario with 12 484 unplanned cells, the planning is efficiently achieved, taking less than 8 seconds, and guaranteeing no collisions between first order neighboring cells. The proposed concept is proved, as this system, capable of automatically planning 3/4/5G realistic networks of multi-vendor equipment, makes Metric more attractive to the market.info:eu-repo/semantics/publishedVersio

    Experimentally Witnessing the Quantumness of Correlations

    Full text link
    The quantification of quantum correlations (other than entanglement) usually entails laboured numerical optimization procedures also demanding quantum state tomographic methods. Thus it is interesting to have a laboratory friendly witness for the nature of correlations. In this Letter we report a direct experimental implementation of such a witness in a room temperature nuclear magnetic resonance system. In our experiment the nature of correlations is revealed by performing only few local magnetization measurements. We also compare the witness results with those for the symmetric quantum discord and we obtained a fairly good agreement
    corecore