21,925 research outputs found

    The Mass-to-Light Ratio of Binary Galaxies

    Get PDF
    We report on the mass-to-light ratio determination based on a newly selected binary galaxy sample, which includes a large number of pairs whose separations exceed a few hundred kpc. The probability distributions of the projected separation and the velocity difference have been calculated considering the contamination of optical pairs, and the mass-to-light ratio has been determined based on the maximum likelihood method. The best estimate of M/LM/L in the B band for 57 pairs is found to be 28 ∼\sim 36 depending on the orbital parameters and the distribution of optical pairs (solar unit, H0=50H_0=50 km s−1^{-1} Mpc−1^{-1}). The best estimate of M/LM/L for 30 pure spiral pairs is found to be 12 ∼\sim 16. These results are relatively smaller than those obtained in previous studies, but consistent with each other within the errors. Although the number of pairs with large separation is significantly increased compared to previous samples, M/LM/L does not show any tendency of increase, but found to be almost independent of the separation of pairs beyond 100 kpc. The constancy of M/LM/L beyond 100 kpc may indicate that the typical halo size of spiral galaxies is less than ∼100\sim 100 kpc.Comment: 18 pages + 8 figures, to appear in ApJ Vol. 516 (May 10

    Experimental Determination of Thermal Entanglement in Spin Clusters using Magnetic Susceptibility Measurements

    Full text link
    The present work reports an experimental observation of thermal entanglement in a clusterized spin chain formed in the compound Na2_2Cu5_5Si4_4O14_{14}. The presence of entanglement was investigated through two measured quantities, an Entanglement Witness and the Entanglement of Formation, both derived from the magnetic susceptibility. It was found that pairwise entanglement exists below ∼200 \sim 200 K. Tripartite entanglement was also observed below ∼240 \sim 240 K. A theoretical study of entanglement evolution as a function of applied field and temperature is also presented.Comment: Submited to Phys. Rev.

    An extended formalism for preferential attachment in heterogeneous complex networks

    Full text link
    In this paper we present a framework for the extension of the preferential attachment (PA) model to heterogeneous complex networks. We define a class of heterogeneous PA models, where node properties are described by fixed states in an arbitrary metric space, and introduce an affinity function that biases the attachment probabilities of links. We perform an analytical study of the stationary degree distributions in heterogeneous PA networks. We show that their degree densities exhibit a richer scaling behavior than their homogeneous counterparts, and that the power law scaling in the degree distribution is robust in presence of heterogeneity

    Experimental realization of the Yang-Baxter Equation via NMR interferometry

    Get PDF
    The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation.Comment: 10 pages and 6 figure
    • …
    corecore