30 research outputs found
Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey
BACKGROUND: Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. AIMS: In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. RESULTS: The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 × 10(10 )bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6–28 primary positive clones per probe of which 50–90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. CONCLUSION: We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome
Attitudes of Dutch intensive care unit clinicians towards oxygen therapy
BACKGROUND: Over the last decade, there has been an increasing awareness for the potential harm of the administration of too much oxygen. We aimed to describe self-reported attitudes towards oxygen therapy by clinicians from a large representative sample of intensive care units (ICUs) in the Netherlands. METHODS: In April 2019, 36 ICUs in the Netherlands were approached and asked to send out a questionnaire (59 questions) to their nursing and medical staff (ICU clinicians) eliciting self-reported behaviour and attitudes towards oxygen therapy in general and in specific ICU case scenarios. RESULTS: In total, 1361 ICU clinicians (71% nurses, 24% physicians) from 28 ICUs returned the questionnaire. Of responding ICU clinicians, 64% considered oxygen-induced lung injury to be a major concern. The majority of respondents considered a partial pressure of oxygen (PaO2) of 6-10 kPa (45-75 mmHg) and an arterial saturation (SaO2) of 85-90% as acceptable for 15 minutes, and a PaO2 7-10 kPa (53-75 mmHg) and SaO2 90-95% as acceptable for 24-48 hours in an acute respiratory distress syndrome (ARDS) patient. In most case scenarios, respondents reported not to change the fraction of inspired oxygen (FiO2) if SaO2 was 90-95% or PaO2 was 12 kPa (90 mmHg). CONCLUSION: A representative sample of ICU clinicians from the Netherlands were concerned about oxygen-induced lung injury, and reported that they preferred PaO2 and SaO2 targets in the lower physiological range and would adjust ventilation settings accordingly
CATALYTIC EPOXIDATION OF CYCLOHEXENE WITH TERT-BUTYLHYDROPEROXIDE USING AN IMMOBILIZED MOLYBDENUM CATALYST
This work describes the synthesis of molybdenum complexes immobilized on a silica support and their performance in the epoxidation reaction of cyclohexene using tert-butylhydroperoxide (TBHP) as the oxidizing agent. The catalyst synthesis included solubilization of variable amounts of bis-oxomolybdenum (VI) acetylacetonate precursor in different solvents such as tetrahydrofuran (THF), ethanol, THF/water and ethanol/water mixtures and contact with the silica support. Characterization techniques demonstrated that the nature of the incorporated molybdenum species depends markedly on the solvent employed. If the solvent employed is an ethanol:water mixture, physical adsorption of the Mo-species onto the support surface occurs; however, when THF is used as the solvent (THF catalyst series), molybdenum is grafted on the silica surface via chemical bonding with the surface hydroxyl groups of silica. Specifically, these latter catalysts show similar performance to that of the homogeneous catalyst, although long-term experiments showed deactivation by leaching of the active phase.Peer reviewe
Attitudes of Dutch intensive care unit clinicians towards oxygen therapy
Background: Over the last decade, there has been an increasing awareness for the potential harm of the administration of too much oxygen. We aimed to describe self-reported attitudes towards oxygen therapy by clinicians from a large representative sample of intensive care units (ICUs) in the Netherlands.Methods: In April 2019, 36 ICUs in the Netherlands were approached and asked to send out a questionnaire (59 questions) to their nursing and medical staff (ICU clinicians) eliciting self-reported behaviour and attitudes towards oxygen therapy in general and in specific ICU case scenarios.Results: In total, 1361 ICU clinicians (71% nurses, 24% physicians) from 28 ICUs returned the questionnaire. Of responding ICU clinicians, 64% considered oxygen-induced lung injury to be a major concern. The majority of respondents considered a partial pressure of oxygen (PaO2) of 6-10 kPa (45-75 mmHg) and an arterial saturation (SaO(2)) of 85-90% as acceptable for 15 minutes, and a PaO2 7-To kPa (53-75 mmHg) and SaO(2) 90-95% as acceptable for 24-48 hours in an acute respiratory distress syndrome (ARDS) patient. In most case scenarios, respondents reported not to change the fraction of inspired oxygen (FiO(2)) if SaO(2) was 90-95% or PaO2 was 12 kPa (90 mmHg).Conclusion: A representative sample of ICU clinicians from the Netherlands were concerned about oxygen-induced lung injury, and reported that they preferred PaO2 and SaO(2) targets in the lower physiological range and would adjust ventilation settings accordingly.Perioperative Medicine: Efficacy, Safety and Outcom
Attitudes of Dutch intensive care unit clinicians towards oxygen therapy
Background: Over the last decade, there has been an increasing awareness for the potential harm of the administration of too much oxygen. We aimed to describe self-reported attitudes towards oxygen therapy by clinicians from a large representative sample of intensive care units (ICUs) in the Netherlands.Methods: In April 2019, 36 ICUs in the Netherlands were approached and asked to send out a questionnaire (59 questions) to their nursing and medical staff (ICU clinicians) eliciting self-reported behaviour and attitudes towards oxygen therapy in general and in specific ICU case scenarios.Results: In total, 1361 ICU clinicians (71% nurses, 24% physicians) from 28 ICUs returned the questionnaire. Of responding ICU clinicians, 64% considered oxygen-induced lung injury to be a major concern. The majority of respondents considered a partial pressure of oxygen (PaO2) of 6-10 kPa (45-75 mmHg) and an arterial saturation (SaO(2)) of 85-90% as acceptable for 15 minutes, and a PaO2 7-To kPa (53-75 mmHg) and SaO(2) 90-95% as acceptable for 24-48 hours in an acute respiratory distress syndrome (ARDS) patient. In most case scenarios, respondents reported not to change the fraction of inspired oxygen (FiO(2)) if SaO(2) was 90-95% or PaO2 was 12 kPa (90 mmHg).Conclusion: A representative sample of ICU clinicians from the Netherlands were concerned about oxygen-induced lung injury, and reported that they preferred PaO2 and SaO(2) targets in the lower physiological range and would adjust ventilation settings accordingly.Perioperative Medicine: Efficacy, Safety and Outcom