38 research outputs found

    Emotional Speech Perception Unfolding in Time: The Role of the Basal Ganglia

    Get PDF
    The basal ganglia (BG) have repeatedly been linked to emotional speech processing in studies involving patients with neurodegenerative and structural changes of the BG. However, the majority of previous studies did not consider that (i) emotional speech processing entails multiple processing steps, and the possibility that (ii) the BG may engage in one rather than the other of these processing steps. In the present study we investigate three different stages of emotional speech processing (emotional salience detection, meaning-related processing, and identification) in the same patient group to verify whether lesions to the BG affect these stages in a qualitatively different manner. Specifically, we explore early implicit emotional speech processing (probe verification) in an ERP experiment followed by an explicit behavioral emotional recognition task. In both experiments, participants listened to emotional sentences expressing one of four emotions (anger, fear, disgust, happiness) or neutral sentences. In line with previous evidence patients and healthy controls show differentiation of emotional and neutral sentences in the P200 component (emotional salience detection) and a following negative-going brain wave (meaning-related processing). However, the behavioral recognition (identification stage) of emotional sentences was impaired in BG patients, but not in healthy controls. The current data provide further support that the BG are involved in late, explicit rather than early emotional speech processing stages

    The selective amygdalohippocampectomy for intractable temporal limbic seizures

    Full text link
    OBJECT: The proximal (anterior) transsylvian approach through a pterional craniotomy was developed by the senior author (M.G.Y.) in 1967 for the microsurgical treatment of saccular aneurysms of the circle of Willis, frontoorbital and temporobasal arteriovenous malformations, cavernomas, and extrinsic and intrinsic tumors. The acquired positive surgical experiences on this large series enabled the senior author, in 1973, to apply this approach for the selective amygdalohippocampectomy in patients with intractable mesial temporal lobe epilepsy. METHODS: The proximal (anterior) transsylvian-transamygdala approach to the mesial temporal structures permits the selective two-thirds resection of the amygdala and hippocampus-parahippocampus in an anteroinferior to posteroinferior exploration axis along the base of the semicircular temporal horn. This strategy ensures preservation of the overlying neopallial temporal convolutions such as the T1, T2, T3, and T4 gyri as well as the related subcortical connective fiber systems and other essential components of the temporal white matter. The application of rigid brain self-retaining retractor systems was strictly avoided during the entire procedure. Computer-assisted navigation was never used. On routine postoperative CT scanning and MR imaging studies, infarction was not observed in any patient. The availability of tractography technology has proven that the connective fiber system around the resected mesial temporal area remains intact. RESULTS: The surgical outcome and results on neoplastic and vascular lesions of the mesiobasal temporal region have been presented in Volumes II, IIIB, and IVB of Microneurosurgery. The surgical outcomes and results in 102 patients with mesial temporal seizures who underwent surgery performed by the senior author in Zürich have been previously published. In this paper, 73 patients who underwent surgery between 1994 and September 2006 in Little Rock, Arkansas, are presented, and 13 other patients are excluded who underwent surgery after September 2006. Altogether, among 188 patients who underwent surgery, there was no surgical mortality or morbidity, and no neurological deficits, new neurocognitive dysfunction, or impairments of the preoperative incapacities. CONCLUSIONS: The surgical outcome in terms of seizures was rewarding in the majority of patients, particularly in those who exhibited the following irregularities on preoperative investigations: regular local dysfunctions on electroencephalography, dysmorphic changes in the mesiobasal temporal parenchyma on MR imaging studies, and hypometabolism in the anterior third of the temporal lobe on PET studies

    Bromine isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry with a conventional sample introduction system

    No full text
    A simple and accurate methodology for Br isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with pneumatic nebulization for sample introduction was developed. The Br+ signals could be measured interference-free at high mass resolution. Memory effects for Br were counteracted using 5 mmol L-1 of NH4OH in sample, standard, and wash solutions. The major cation load of seawater was removed via cation exchange chromatography using Dowex 50WX8 resin. Subsequent Br preconcentration was accomplished via evaporation of the sample solution at 90 °C, which did not induce Br losses or isotope fractionation. Mass discrimination was corrected for by external correction using a Cl-matched standard measured in a sample-standard bracketing approach, although Sr, Ge, and Se were also tested as potential internal standards for internal correction for mass discrimination. The δ81Br (versus standard mean ocean bromide (SMOB)) values thus obtained for the NaBr isotopic reference material NIST SRM 977 and for IRMM BCR-403 seawater certified reference material are in agreement with literature values. For NIST SRM 977, the 81Br/79Br ratio (0.97291) was determined with a precision ≤0.08‰ relative standard deviation (RSD).A simple and accurate methodology for Br isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with pneumatic nebulization for sample introduction was developed. The Br+ signals could be measured interference-free at high mass resolution. Memory effects for Br were counteracted using 5 mmol L-1 of NH4OH in sample, standard, and wash solutions. The major cation load of seawater was removed via cation exchange chromatography using Dowex 50WX8 resin. Subsequent Br preconcentration was accomplished via evaporation of the sample solution at 90 A degrees C, which did not induce Br losses or isotope fractionation. Mass discrimination was corrected for by external correction using a Cl-matched standard measured in a sample-standard bracketing approach, although Sr, Ge, and Se were also tested as potential internal standards for internal correction for mass discrimination. The delta Br-81 (versus standard mean ocean bromide (SMOB)) values thus obtained for the NaBr isotopic reference material NIST SRM 977 and for IRMM BCR-403 seawater certified reference material are in agreement with literature values. For NIST SRM 977, the Br-81/Br-79 ratio (0.97291) was determined with a precision a parts per thousand currency sign0.08aEuro degrees relative standard deviation (RSD)
    corecore