172 research outputs found

    Characteristics and serotype distribution of childhood cases of invasive pneumococcal disease following pneumococcal conjugate vaccination in England and Wales, 2006-14

    Get PDF
    Background The 7-valent (PCV7) and 13-valent (PCV13) pneumococcal conjugate vaccines are highly effective in preventing invasive pneumococcal disease (IPD) caused by vaccine serotypes. Vaccine failure (vaccine-type IPD after age-appropriate immunisation) is rare. Little is known about the risk, clinical characteristics or outcomes of PCV13 compared to PCV7 vaccine failure. Methods Public Health England conducts IPD surveillance and provides a national reference service for serotyping pneumococcal isolates in England and Wales. We compared the epidemiology, rates, risk factors, serotype distribution, clinical characteristics, and outcomes of IPD in children with PCV13 and PCV7 vaccine failure. Results A total of 163 episodes of PCV failure were confirmed in 161 children over eight years (04 September 2006 to 03 September 2014) in ten birth cohorts. After three vaccine doses, PCV7 and PCV13 failure rates were 0.19/100,000 (95% CI, 0.10-0.33; 57 cases) and 0.66/100,000 (95% CI, 0.44-0.99; 104 cases) vaccinated person-years, respectively. Children with PCV13 failure were more likely to be healthy (87/105 [82.9%] vs. 37/56 [66.1%]; P=0.02), present with bacteremic lower respiratory tract infection (61/105 [58.1%] vs. 11/56 [19.6%]; P<0.001) and develop empyema (41/61 [67.2%] vs. 1/11 [9.1%]; P<0.001) compared to PCV7 failures. Serotypes 3 (n=38, 36.2%) and 19A (n=30, 28.6%) were responsible for most PCV13 failures. Five children died (3.1%; 95% CI, 1.0-7.1%), including four with co-morbidities. Conclusions PCV failure is rare and, compared to PCV7 serotypes, the additional PCV13 serotypes are more likely to cause bacteremic lower respiratory tract infection and empyema in healthy vaccinated children

    DNA-Based Diet Analysis for Any Predator

    Get PDF
    Background: Prey DNA from diet samples can be used as a dietary marker; yet current methods for prey detection require a priori diet knowledge and/or are designed ad hoc, limiting their scope. I present a general approach to detect diverse prey in the feces or gut contents of predators. Methodology/Principal Findings: In the example outlined, I take advantage of the restriction site for the endonuclease Pac I which is present in 16S mtDNA of most Odontoceti mammals, but absent from most other relevant non-mammalian chordates and invertebrates. Thus in DNA extracted from feces of these mammalian predators Pac I will cleave and exclude predator DNA from a small region targeted by novel universal primers, while most prey DNA remain intact allowing prey selective PCR. The method was optimized using scat samples from captive bottlenose dolphins (Tursiops truncatus) fed a diet of 6–10 prey species from three phlya. Up to five prey from two phyla were detected in a single scat and all but one minor prey item (2% of the overall diet) were detected across all samples. The same method was applied to scat samples from free-ranging bottlenose dolphins; up to seven prey taxa were detected in a single scat and 13 prey taxa from eight teleost families were identified in total. Conclusions/Significance: Data and further examples are provided to facilitate rapid transfer of this approach to any predator. This methodology should prove useful to zoologists using DNA-based diet techniques in a wide variety of study systems

    Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus.

    Get PDF
    Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV

    Deterministic processes structure bacterial genetic communities across an urban landscape

    Get PDF
    Land-use change is predicted to act as a driver of zoonotic disease emergence through human exposure to novel microbial diversity, but evidence for the effects of environmental change on microbial communities in vertebrates is lacking. We sample wild birds at 99 wildlife-livestock-human interfaces across Nairobi, Kenya, and use whole genome sequencing to characterise bacterial genes known to be carried on mobile genetic elements (MGEs) within avian-borne Escherichia coli (n=241). By modelling the diversity of bacterial genes encoding virulence and antimicrobial resistance (AMR) against ecological and anthropogenic forms of urban environmental change, we demonstrate that communities of avian-borne bacterial genes are shaped by the assemblage of co-existing avian, livestock and human communities, and the habitat within which they exist. In showing that non-random processes structure bacterial genetic communities in urban wildlife, these findings suggest that it should be possible to forecast the effects of urban land-use change on microbial diversity
    corecore