19 research outputs found

    Structural effects in UO2_2 thin films irradiated with fission-energy Xe ions

    Get PDF
    Uranium dioxide thin films have been successfully grown on LSAT (Al10_{10}La3_3O51_{51}Sr14_{14}Ta7_7) substrates by reactive magnetron sputtering. Irradiation by 92 MeV 129^{129}Xe23+^{23+} ions to simulate fission damage that occurs within nuclear fuels caused microstructural and crystallographic changes. Initially flat and continuous thin films were produced by magnetron sputtering with a root mean square roughness of 0.35 nm determined by AFM. After irradiation, this roughness increased to 60-70 nm, with the films developing discrete microstructural features: small grains (~3 μ\mum), along with larger circular (up to 40 μ\mum) and linear formations with non-uniform composition according to the SEM, AFM and EDX results. The irradiation caused significant restructuring of the UO2_2 films that was manifested in significant filmsubstrate mixing, observed through EDX analysis. Diffusion of Al from the substrate into the film in unirradiated samples was also observed.Engineering and Physical Sciences Research Council (Grant ID: EP/ I036400/1), Radioactive Waste Management Ltd (formerly the Radioactive Waste Management Directorate of the UK Nuclear Decommissioning Authority, contract NPO004411A-EPS02), Russian Foundation for Basic Research (projects 13-03-90916), CSAR, Grand Accelélérateur National d’Ions Lourds (GANIL) Caen France, French Network EMIR, CIMAP-CIRIL, M.V.Lomonosov Moscow State University Program of Development, CKP FMI IPCE RA
    corecore