1,543 research outputs found

    Growth of quantum dot coated core-shell anisotropic nanowires for improved thermal and electronic transport

    Get PDF
    Anisotropic nanowires are promising candidates for electronic thermal management due to their unique electrical and thermal properties.However, eco-friendly solution-processed nanomaterials with an elaborate morphology and microstructure for modulating thermal andcharge transfer are still a considerable challenge. Herein, we present a simple but effective approach for synthesizing pseudo core-shell nano-wires through quantum dot (QD)-like nanostructure coating (p-NW@QD) to generate exceptional electron-phonon transport properties.With the assistance of diphenyl ether as a coordination solvent, high crystallinity lead sulfide NWs can be fabricated with a large aspect ratiotogether with uniform QD coating. Thisp-NW@QD exhibits high electronic mobility (30.65 cm2/Vs) as well as a diameter independent lowthermal conductivity (1.5361 W/m K). Direct charge/heat carrier flow measurements and computational simulations demonstrate that theunusual electrical and thermal transport phenomenon is strongly dependent on the fast charge transport through the QD shell, and a slowphonon migration across the Umklapp process dominated NW cores. These findings indicate a significant step toward colloidal synthesisnanostructures for future high-performance nanoelectronics and thermal energy devices

    Integrating the promotion of physical activity within a smoking cessation programme: Findings from collaborative action research in UK Stop Smoking Services

    Get PDF
    Background: Within the framework of collaborative action research, the aim was to explore the feasibility of developing and embedding physical activity promotion as a smoking cessation aid within UK 6/7-week National Health Service (NHS) Stop Smoking Services. Methods: In Phase 1 three initial cycles of collaborative action research (observation, reflection, planning, implementation and re-evaluation), in an urban Stop Smoking Service, led to the development of an integrated intervention in which physical activity was promoted as a cessation aid, with the support of a theoretically based self-help guide, and self monitoring using pedometers. In Phase 2 advisors underwent training and offered the intervention, and changes in physical activity promoting behaviour and beliefs were monitored. Also, changes in clients’ stage of readiness to use physical activity as a cessation aid, physical activity beliefs and behaviour and physical activity levels were assessed, among those who attended the clinic at 4-week post-quit. Qualitative data were collected, in the form of clinic observation, informal interviews with advisors and field notes. Results: The integrated intervention emerged through cycles of collaboration as something quite different to previous practice. Based on field notes, there were many positive elements associated with the integrated intervention in Phase 2. Self-reported advisors’ physical activity promoting behaviour increased as a result of training and adapting to the intervention. There was a significant advancement in clients’ stage of readiness to use physical activity as a smoking cessation aid. Conclusions: Collaboration with advisors was key in ensuring that a feasible intervention was developed as an aid to smoking cessation. There is scope to further develop tailored support to increasing physical activity and smoking cessation, mediated through changes in perceptions about the benefits of, and confidence to do physical activity

    Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line

    Get PDF
    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3

    Mutation Rates of TGFBR2 and ACVR2 Coding Microsatellites in Human Cells with Defective DNA Mismatch Repair

    Get PDF
    Microsatellite instability promotes colonic tumorigenesis through generating frameshift mutations at coding microsatellites of tumor suppressor genes, such as TGFBR2 and ACVR2. As a consequence, signaling through these TGFβ family receptors is abrogated in DNA Mismatch repair (MMR)-deficient tumors. How these mutations occur in real time and mutational rates of these human coding sequences have not previously been studied. We utilized cell lines with different MMR deficiencies (hMLH1−/−, hMSH6−/−, hMSH3−/−, and MMR-proficient) to determine mutation rates. Plasmids were constructed in which exon 3 of TGFBR2 and exon 10 of ACVR2 were cloned +1 bp out of frame, immediately after the translation initiation codon of an enhanced GFP (EGFP) gene, allowing a −1 bp frameshift mutation to drive EGFP expression. Mutation-resistant plasmids were constructed by interrupting the coding microsatellite sequences, preventing frameshift mutation. Stable cell lines were established containing portions of TGFBR2 and ACVR2, and nonfluorescent cells were sorted, cultured for 7–35 days, and harvested for flow cytometric mutation detection and DNA sequencing at specific time points. DNA sequencing revealed a −1 bp frameshift mutation (A9 in TGFBR2 and A7 in ACVR2) in the fluorescent cells. Two distinct fluorescent populations, M1 (dim, representing heteroduplexes) and M2 (bright, representing full mutants) were identified, with the M2 fraction accumulating over time. hMLH1 deficiency revealed 11 (5.91×10−4) and 15 (2.18×10−4) times higher mutation rates for the TGFBR2 and ACVR2 microsatellites compared to hMSH6 deficiency, respectively. The mutation rate of the TGFBR2 microsatellite was ∼3 times higher in both hMLH1 and hMSH6 deficiencies than the ACVR2 microsatellite. The −1 bp frameshift mutation rates of TGFBR2 and ACVR2 microsatellite sequences are dependent upon the human MMR background

    Lead Increases Lipopolysaccharide-Induced Liver Injury through Tumor Necrosis Factor-α Overexpression by Monocytes/Macrophages: Role of Protein Kinase C and p42/44 Mitogen-Activated Protein Kinase

    Get PDF
    Although lead and lipopolysaccharide (LPS), both important environmental pollutants, activate cells through different receptors and participate in distinct upstream signaling pathways, Pb increases the amount of LPS-induced tumor necrosis factor-α (TNF-α). We examined the cells responsible for the excess production of Pb-increased LPS-induced TNF-α and liver injury, and the roles of protein kinase C (PKC) and p42/44 mitogen-activated protein kinase (MAPK) in the induction of TNF-α. Peritoneal injection of Pb alone (100 μmol/kg) or a low dose of LPS (5 mg/kg) did not affect serum TNF-α or liver functions in A/J mice. In contrast, coexposure to these noneffective doses of Pb plus LPS (Pb+LPS) strongly induced TNF-α expression and resulted in profound liver injury. Direct inhibition of TNF-α or functional inactivation of monocytes/macrophages significantly decreased the level of Pb+LPS-induced serum TNF-α and concurrently ameliorated liver injury. Pb+LPS coexposure stimulated the phosphorylation of p42/44 MAPK and the expression of TNF-α in CD14(+) cells of cultured mouse whole blood, peritoneal macrophages, and RAW264.7 cells. Moreover, blocking PKC or MAPK effectively reduced Pb+LPS-induced TNF-α expression and liver injury. In summary, monocytes/macrophages were the cells primarily responsible for producing, through the PKC/MAPK pathway, the excess Pb-increased/LPS-induced TNF-α that caused liver injury

    Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation

    Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin

    Get PDF
    Background: Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties. Methodology/Results: The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface. Conclusion: Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1
    corecore