4,237 research outputs found

    Suspended two-dimensional electron gases in In₀.₇₅Ga₀.₂₅As quantum wells

    Get PDF
    We demonstrate that In0.75Ga0.25As quantum wells can be freely suspended without losing electrical quality when the epitaxial strain-relieving buffer layer is removed. In applied magnetic fields, non-dissipative behavior is observed in the conductivity, and a current induced breakdown of the quantum Hall effect shows a lower critical current in the suspended layers due to efficient thermal isolation compared to the non-suspended-control device. Beyond the critical current, background impurity scattering in the suspended two-dimensional channel regions dominates with stochastic, resonant-like features in the conductivity. This device fabrication scheme offers the potential for thermally isolated devices containing suspension-asymmetry-induced, high spin–orbit coupling strengths with reduced electron–phonon interaction behavior but without introducing high levels of disorder in the processing. This work was funded by EPSRC Grant Nos. EP/K004077/1 and EP/R029075/1, UK. We thank Professor Chris Ford for useful discussions

    Automatic Detection of ECG Abnormalities by using an Ensemble of Deep Residual Networks with Attention

    Full text link
    Heart disease is one of the most common diseases causing morbidity and mortality. Electrocardiogram (ECG) has been widely used for diagnosing heart diseases for its simplicity and non-invasive property. Automatic ECG analyzing technologies are expected to reduce human working load and increase diagnostic efficacy. However, there are still some challenges to be addressed for achieving this goal. In this study, we develop an algorithm to identify multiple abnormalities from 12-lead ECG recordings. In the algorithm pipeline, several preprocessing methods are firstly applied on the ECG data for denoising, augmentation and balancing recording numbers of variant classes. In consideration of efficiency and consistency of data length, the recordings are padded or truncated into a medium length, where the padding/truncating time windows are selected randomly to sup-press overfitting. Then, the ECGs are used to train deep neural network (DNN) models with a novel structure that combines a deep residual network with an attention mechanism. Finally, an ensemble model is built based on these trained models to make predictions on the test data set. Our method is evaluated based on the test set of the First China ECG Intelligent Competition dataset by using the F1 metric that is regarded as the harmonic mean between the precision and recall. The resultant overall F1 score of the algorithm is 0.875, showing a promising performance and potential for practical use.Comment: 8 pages, 2 figures, conferenc

    Photometric stereo for 3D face reconstruction using non-linear illumination models

    Get PDF
    Face recognition in presence of illumination changes, variant pose and different facial expressions is a challenging problem. In this paper, a method for 3D face reconstruction using photometric stereo and without knowing the illumination directions and facial expression is proposed in order to achieve improvement in face recognition. A dimensionality reduction method was introduced to represent the face deformations due to illumination variations and self shadows in a lower space. The obtained mapping function was used to determine the illumination direction of each input image and that direction was used to apply photometric stereo. Experiments with faces were performed in order to evaluate the performance of the proposed scheme. From the experiments it was shown that the proposed approach results very accurate 3D surfaces without knowing the light directions and with a very small differences compared to the case of known directions. As a result the proposed approach is more general and requires less restrictions enabling 3D face recognition methods to operate with less data

    Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite-Difference Scheme

    Full text link
    We discuss the numerical solution of nonlinear parabolic partial differential equations, exhibiting finite speed of propagation, via a strongly implicit finite-difference scheme with formal truncation error O[(Δx)2+(Δt)2]\mathcal{O}\left[(\Delta x)^2 + (\Delta t)^2 \right]. Our application of interest is the spreading of viscous gravity currents in the study of which these type of differential equations arise. Viscous gravity currents are low Reynolds number (viscous forces dominate inertial forces) flow phenomena in which a dense, viscous fluid displaces a lighter (usually immiscible) fluid. The fluids may be confined by the sidewalls of a channel or propagate in an unconfined two-dimensional (or axisymmetric three-dimensional) geometry. Under the lubrication approximation, the mathematical description of the spreading of these fluids reduces to solving the so-called thin-film equation for the current's shape h(x,t)h(x,t). To solve such nonlinear parabolic equations we propose a finite-difference scheme based on the Crank--Nicolson idea. We implement the scheme for problems involving a single spatial coordinate (i.e., two-dimensional, axisymmetric or spherically-symmetric three-dimensional currents) on an equispaced but staggered grid. We benchmark the scheme against analytical solutions and highlight its strong numerical stability by specifically considering the spreading of non-Newtonian power-law fluids in a variable-width confined channel-like geometry (a "Hele-Shaw cell") subject to a given mass conservation/balance constraint. We show that this constraint can be implemented by re-expressing it as nonlinear flux boundary conditions on the domain's endpoints. Then, we show numerically that the scheme achieves its full second-order accuracy in space and time. We also highlight through numerical simulations how the proposed scheme accurately respects the mass conservation/balance constraint.Comment: 36 pages, 9 figures, Springer book class; v2 includes improvements and corrections; to appear as a contribution in "Applied Wave Mathematics II

    Neutron Electric Dipole Moment Constraint on Scale of Minimal Left-Right Symmetric Model

    Full text link
    Using an effective theory approach, we calculate the neutron electric dipole moment (nEDM) in the minimal left-right symmetric model with both explicit and spontaneous CP violations. We integrate out heavy particles to obtain flavor-neutral CP-violating effective Lagrangian. We run the Wilson coefficients from the electroweak scale to the hadronic scale using one-loop renormalization group equations. Using the state-of-the-art hadronic matrix elements, we obtain the nEDM as a function of right-handed W-boson mass and CP-violating parameters. We use the current limit on nEDM combined with the kaon-decay parameter ϵ\epsilon to provide the most stringent constraint yet on the left-right symmetric scale MWR>(10±3) M_{W_R} > (10 \pm 3) TeV.Comment: 20 pages and 8 figure

    Assay strategies for the discovery and validation of therapeutics targeting <i>Brugia pahangi</i> Hsp90

    Get PDF
    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target

    Systematic review of interventions for children with Fetal Alcohol Spectrum Disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children with Fetal Alcohol Spectrum Disorders (FASD) may have significant neurobehavioural problems persisting into adulthood. Early diagnosis may decrease the risk of adverse life outcomes. However, little is known about effective interventions for children with FASD. Our aim is to conduct a systematic review of the literature to identify and evaluate the evidence for pharmacological and non-pharmacological interventions for children with FASD.</p> <p>Methods</p> <p>We did an electronic search of the Cochrane Library, MEDLINE, EMBASE, PsychINFO, CINAHL and ERIC for clinical studies (Randomized controlled trials (RCT), quasi RCT, controlled trials and pre- and post-intervention studies) which evaluated pharmacological, behavioural, speech therapy, occupational therapy, physiotherapy, psychosocial and educational interventions and early intervention programs. Participants were aged under 18 years with a diagnosis of a FASD. Selection of studies for inclusion and assessment of study quality was undertaken independently by two reviewers. Meta-analysis was not possible due to diversity in the interventions and outcome measures.</p> <p>Results</p> <p>Twelve studies met the inclusion criteria. Methodological weaknesses were common, including small sample sizes; inadequate study design and short term follow up. Pharmacological interventions, evaluated in two studies (both RCT) showed some benefit from stimulant medications. Educational and learning strategies (three RCT) were evaluated in seven studies. There was some evidence to suggest that virtual reality training, cognitive control therapy, language and literacy therapy, mathematics intervention and rehearsal training for memory may be beneficial strategies. Three studies evaluating social communication and behavioural strategies (two RCT) suggested that social skills training may improve social skills and behaviour at home and Attention Process Training may improve attention.</p> <p>Conclusion</p> <p>There is limited good quality evidence for specific interventions for managing FASD, however seven randomized controlled trials that address specific functional deficits of children with FASD are underway or recently completed.</p

    A Search for leptophilic Z_(l) boson at future linear colliders

    Full text link
    We study the possible dynamics associated with leptonic charge in future linear colliders. Leptophilic massive vector boson, Z_(l), have been investigated through the process e^(+)e^(-) -> mu^(+)mu^(-). We have shown that ILC and CLIC will give opportunity to observe Z_(l) with masses up to the center of mass energy if the corresponding coupling constant g_(l) exceeds 10^(-3).Comment: 12 pages, 10 figure

    Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences

    Get PDF
    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.

    Two Simple W' Models for the Early LHC

    Full text link
    W' gauge bosons are good candidates for early LHC discovery. We define two reference models, one containing a W'_R and one containing a W'_L, which may serve as ``simplified models'' for presenting experimental results of W' searches at the LHC. We present the Tevatron bounds on each model and compute the constraints from precision electroweak observables. We find that indirect low-energy constraints on the W'_L are quite strong. However, for a W'_R coupling to right-handed fermions there exists a sizeable region in parameter space beyond the bounds from the Tevatron and low-energy precision measurements where even 50 inverse picobarns of integrated LHC luminosity are sufficient to discover the W'_R. The most promising final states are two leptons and two jets, or one lepton recoiling against a ``neutrino jet''. A neutrino jet is a collimated object consisting of a hard lepton and two jets arising from the decay of a highly boosted massive neutrino.Comment: 20 pages, 8 figures. v2: references adde
    • …
    corecore