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Abstract. Face recognition in presence of illumination changes, variant
pose and different facial expressions is a challenging problem. In this
paper, a method for 3D face reconstruction using photometric stereo
and without knowing the illumination directions and facial expression is
proposed in order to achieve improvement in face recognition. A dimen-
sionality reduction method was introduced to represent the face defor-
mations due to illumination variations and self shadows in a lower space.
The obtained mapping function was used to determine the illumination
direction of each input image and that direction was used to apply pho-
tometric stereo. Experiments with faces were performed in order to eval-
uate the performance of the proposed scheme. From the experiments it
was shown that the proposed approach results very accurate 3D surfaces
without knowing the light directions and with a very small differences
compared to the case of known directions. As a result the proposed ap-
proach is more general and requires less restrictions enabling 3D face
recognition methods to operate with less data.
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1 Introduction

Automatic face and facial expression recognition has become a very vibrant topic
in the last decade due to the fast progress of human computer intelligent interac-
tion (HCII). Face recognition on frontal faces under controlled condition, such as
known light condition, is a mature research field and high recognition accuracy
can be achieved. However, the performance decreases in presence of illumina-
tions changes, pose variations, facial expressions and a large number of subjects
[12]. A large amount of interest has been addressed towards 3D modeling and
reconstruction of faces in order to improve face and facial expression recognition.
Photometric stereo techniques are used to estimate the illumination condition
and to extract 3D geometry information of a face [17, 18, 2].

Photometric stereo techniques are further categorised into constrained and
unconstrained. Unconstrained photometric stereo means that we do not have
any priori knowledge of the light-source direction or the light-source intensity.
However, in constrained photometric stereo the light-source direction is not an
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unknown, and for this reason it is easier to determine the surface normal and
the surface reflectance. The main issue related to the unconstrained photometric
stereo approaches is that a large number of images is required captured while the
light source is moving around the observed object. Therefore, this process is not
convenient for real time applications since both the capturing and processing
time increases significantly. In this paper in order to solve these problems an
unconstrained photometric stereo approach for face reconstruction is proposed
requiring at least three images of the surface captured under different unknown
illumination directions. The primary contributions of this work are twofold. First,
we present a novel methodology for illumination direction estimation for human
faces based on low dimensional subspaces. Secondly, we perform an analysis
for the accuracy of the obtained lighting conditions in terms of reconstruction
accuracy and computational complexity.

This paper is organised as follows. In Section 2 previous work on photometric
stereo and low dimensional subspaces is reviewed. In Section 3, we present an
overview of the proposed approach. In Section 4 experiments are performed
using different datasets and metrics indicating the advantages of the proposed
approach. Finally, conclusions on the proposed methodology and the evaluation
process are presented.

2 Previous work

Woodham [30] was the first to introduce photometric stereo. He proposed a
method which was simple and efficient, but only dealt with Lambertian sur-
faces and was sensitive to noise. An unconstrained photometric-stereo method
for estimating the surface normal and the surface reflectance of objects with-
out a priori knowledge of the light source directions was proposed in [7]. Also,
worth mentioning the work in [16, 9, 29] that are based on similar approaches.
Recently approaches for 3D reconstruction based on photometric stereo with
unknown lighting were proposed [4, 25, 1, 26, 31, 22, 21, 27]. Regarding all these
methods, the main difference is that they require a significant amount of images
captured while the illumination direction is changing, which makes them unsuit-
able for real time applications and scenarios that involve humans due to their
unconstrained self-movement.

To the best of our knowledge, few approaches based on low dimensional
subspaces have been used on photometrics. However, a few of them have potential
since they are able to consider explicitly the modelling of illumination changes
in their methodology. Georghiades et al. [9] a generative model is created by
using low dimensional linear subspaces in order to reconstruct new poses and
illuminations. Although useful for face recognition, the systems is face specific
and therefore unable to extrapolate to new subjects as required in photometrics.
Hallinan [10] propose a low-dimensional model for human faces that can both
synthesize a face image when given lighting conditions and can estimate lighting
conditions when given a face image. Althugh based on PCA, the method is
designed to explain lighting conditions and not to discount them. However this
is achieve by limiting all the other sources of variability, including the usage of
different people, and will fail otherwise. Lee [20] also propose to represent the
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illumination cone in a low dimensional space, similarly to [9], by using spherical
armonics. Again, the generated low dimensional spaces are person specific.

As a common limitation factor, all these approaches rely on linear method-
ologies, and therefore, on the assumption of linearity in the face subspace. This
assumption is only true under certain conditions, such as face specific appli-
cations, as we will explain in section 3.1, which lead to poor performances for
realistic scenarios with multiple subjects, different illumination conditions and
facial expressions. Instead, we propose a non linear low dimensional space able
to model these factors and take advantage of it for 3D face reconstruction and
related recognition applications.

3 Proposed methodology

In this work a novel two step approach for face reconstruction using photomet-
ric stereo is proposed. Initially, illumination direction is estimated using low
dimensional illumination models. During this step a large number of faces illu-
minated from all possible directions on a hemisphere is used for training and
to create a manifold that represents all the lighting directions in a 3D space.
In the second part of the proposed methodology, a new face is captured and at
least 3 images are obtained illuminated from different unknown directions. The
images are transferred to the new space using the mapping function obtained
from the previous step and the corresponding illumination direction is obtained.
Finally, photometric stereo is applied and the surface normals are estimated.
The proposed algorithm is analysed in the following sections.

3.1 Illumination subspace

Using a set of training images from different people and lighting directions, a
low dimensional subspace can be generated [9]. In this subspace,the distribution
of the training samples allows us to estimate the illumination direction while the
usage of different subjects allow generalisation to new test subjects.

Dimensionality reduction techniques have been used frequently to model face
appearance and pose [11], but illumination variations have been rarely considered
or accepted as a factor to be removed [9, 10, 20]. This is mainly due to the false
assumption that the low dimensional subspace comprising the face samples is
linear. Belhumeur et al. [5] demonstrated that all images of a given Lambertian
surfaces, taken from a fixed point of view, and under varying illuminations can lie
in a 3D linear subspace, but they also pointed that shadowing, facial expressions
and other factors produce that regions of the face may exhibit deviation from
a linear subspace. The required usage of several subjects in the dataset, and
therefore different Lambertian surfaces, implies a substantial factor that affects
this linearity.

In order to deal with all the possible, we propose a nonlinear dimensionality
reduction (DR) technique, as oppose to other approaches which try to linearise
the space by choosing an ad-hoc optimal linear and discarding non linear factors.
Many different non linear DR techniques could be used, both mapping based
(GPLVM [19], GPDM [14]) or spectral based (LE [6], LLE [24], Isomap [13]).
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However, the big differences among the face surfaces can hide the illumination
information, being discarded during the DR process by conventional techniques.
Among these methodologies, t-Stochastic Neighbour Embedding (t-SNE) [28]
has been proposed to provide a mathematical framework where new constrains
can easily be introduced.

3.1.1 Illumination manifold using Stochastic Neighbour Embedding
t-Stochastic Neighbour Embedding (t-SNE) [28] is a non-linear dimensionality
reduction technique used to embed high-dimensional data into a low-dimensional
space (e.g., two or three dimensions for human-intuitive visualization). Given a
set of N high-dimensional faces of people under different illumination conditions
(i.e. data-points) x1, ..., xN , t-SNE starts by converting the high-dimensional Eu-
clidean distances between data-points (‖xi−xj‖)into pairwise similarities given
by symmetrized conditional probabilities. In particular, the similarity between
data-points xi and xj is calculated from (1) as:

pij =
pi|j + pj|i

2N
(1)

where pi|j is the conditional probability that xi will choose xj as its neigh-
bour if neigbours were picked in proportion to their probability density under a
Gaussian centred at xi with variance σ2

i , given by (2):

pi|j =
exp (−‖xi − xj‖2/2σ2

i )∑
k 6=i exp (−‖xk − xi‖2/2σ2

i )
(2)

In the low-dimensional space the Student-t distribution (with a single degree
of freedom: f(x) = 1/(π(1 + x2))) that has much heavier tails than a Gaussian
(in order to allow dissimilar objects to be modelled far apart in the map) is used
to convert distances into joint probabilities. Therefore, the joint probabilities qij
for the low-dimensional counterparts yi and yj of the high-dimensional points xi
and xj are given by

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

. (3)

The objective of the embedding is to match these two distributions (i.e.,
(1) and (2)), as well as possible. This can be achieved by minimizing a cost
function which is the Kullback-Leibler divergence between the original (pij) and
the induced (qij) distributions over neighbours for each object

DKL(P‖Q) =
∑
i

∑
j

pij log
pij
qij
. (4)

The minimization of the cost function is performed using a gradient decent
method which have the following simple form:

δDKL

δyi
= 4

∑
j

(pij − qij)(yi − yj)
(1 + ‖yi − yj‖2)

(5)
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3.1.2 Mapping functions Once the low dimensional illumination space is
obtained, a mapping mechanism is needed in order to project a new face or a
subset of them and estimate the most likely illumination direction. Methods such
as t-SNE allow unsupervised generation of embedded spaces, but they do not
provide explicitly any mapping mechanism between the low and high dimensional
spaces. This issue has been tackled very effectively by Radial Basis Function
Networks (RBFN) [8].Projection functions are produced by training direct φ
and inverse φ′ sets of functions between high and low dimensional spaces.

φ : RN → Rn and φ′ : Rn → RN (6)

In our framework, multi-dimensional Gaussian activation functions φj (Eq. 7) are
employed because of its flexibility and superior performance to fit the subspace.
.

φj = e(−(X−µj)
T ·Σ−1

j ·(X−µj)) (7)

for j = 1, ..., ng, where X is the input feature vector, ng the number of Gaussian
functions to be discovered and µj and Σj the mean and covariance respectively
of each Gaussian function.

3.1.3 Illumination estimation In order to estimate the most likely illumi-
nation directions for a new face sample, a nearest neighbour classifier is used in
the embedded space. The embedded space is composed of 9 different subspaces,
each of them comprising all the possible azimut angles from 0 to 360, at 9 differ-
ent elevation angles from 10 to 90 degrees. Each subspace generated with t-SNE
produces a radial manifold, were people are overlaping and distributed according
to both their appearance and the illumination angle of the lighting. The overall
embedded space can be represented as a hemisphere compose of radial manifolds
(see figure 1).

By projecting a new sample in this space and pairing with the nearest neigh-
bour, the illumination direction is estimated as the same belonging to this near-
est neighbour. This strategy has been proved enough for providing a sufficient
estimation, as depicted in figure 1 and in the result section.

3.2 Photometric Stereo without illumination information

Since a mapping function from the high dimensional space of all possible shadow
and highlight deformations that could occur on a human face to a 3D space is
obtained, the illumination direction for any face could be estimated using the
same mapping mechanism. Regarding the illumination deformations over a face
and in general a surface, it is well known that the fraction of light reflected on an
object’s surface in a certain direction depends upon the optical properties of the
surface material. In this paper we use the Lambertian model, thus the fraction
of the incident illumination reflected in a particular direction depends only on
the surface normals.

All faces share common surface characteristics, which therefore result in sim-
ilar statistical distributions of normal vectors, and therefore the shadow and
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Fig. 1. Left. The obtained 3-dimensional manifold using t-SNE corresponding to the
hemispherical embedded space for azimuth and elevation angles. Right. Angular error
obtained for this sequence using nearest neighbour classifier for subject 3 projected on
illumination subspace composed by subjects [1,2, 4-7].

highlight deformations share common characteristics too, independent of the
human face. This approach can be extended to any class of surface, not only
faces, as long as they share similar facet normal distributions.

Based on the Lambertian model that is used, if n is the normal vector of a
surface facet, ρ its albedo with the cosine of the incidence angle θi (the angle
between the direction of the incident light and the surface normal), L is the light
direction and I the corresponding brightness value recorded for that facet, we
have

I = ρ cos(θi) = ρ(L · n) (8)

Let us now consider a Lambertian surface patch with albedo ρ and normal
n, illuminated in turn by several fixed and known illumination sources with

directions L1, L2, ..., LÑ . In this case we can express the intensities of the
obtained pixels as:

Ik = ρ(Lk · n), where k = 1, 2, ..., Ñ. (9)

If we move to a matrix form, equation (9) could then be rewritten as

I = ρ[L]n (10)

If there are at least three illumination vectors which are not coplanar, we can
calculate ρ and n using the Least Squares Error technique, which amounts to
applying the left inverse of [L]:

([L]T [L])−1[L]T I = ρn (11)

Since n has unit length, we can estimate both the surface normal (as the direction
of the obtained vector) and the albedo (as its length). Extra images allow one
to recover the surface parameters more robustly.

The problem of reconstructing the surface from the modified normals is con-
sidered next and the depth map needs to be obtained. Therefore, the surface is
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represented as (x, y, f(x, y)), and the normal as a function of (x, y) is

N(x, y) =
1√

1 + ∂f
∂x

2
+ ∂f

∂y

2

(
−∂f
∂x
,−∂f

∂y
, 1

)T
(12)

To recover the depth map, we need to determine f(x, y) from measured values of
the unit normal. There are a number of ways in which a surface may be recovered
from a field of surface normals [23, 15]. There are local and global methods based
on trigonometry and the minimisation of error functionals, respectively and the
most suitable could be selected for this part of the process.

Assume that the measured value of the unit normal at some point (x, y) is
(a(x, y), b(x, y), c(x, y)). Then

∂f

∂x
=
a(x, y)

c(x, y)

∂f

∂y
=
b(x, y)

c(x, y)
(13)

At this stage we may perform another check on our data set. Because

∂2f

∂x∂y
=

∂2f

∂y∂x
(14)

we expect

A(x, y) ≡
∂
(
a(x,y)
c(x,y)

)
∂y

−
∂
(
b(x,y)
c(x,y)

)
∂x

(15)

to be small (close to zero) at each point.
Assuming that the partial derivatives pass the above sanity test, we can re-

construct the surface up to some constant error in depth. The partial derivatives
give the change in surface height with a small step in either the x or the y di-
rection. This means that we can get the surface by summing these changes in
height along some path. In particular, we have

f(x, y) =

∮
C

(
∂f

∂x
,
∂f

∂y

)
· dl + c (16)

where C is a curve starting at some fixed point and ending at (x, y), dl is the
infinitesimal element along the curve and c is a constant of integration, which
represents the unknown height of the surface at the starting point. In order to
improve further the reconstruction we combine it with a multigrid 2D integration
algorithm, which iteratively solves a global minimization problem, and is less
sensitive to the propagation of local errors.

4 Experiments and Results

In order to evaluate the accuracy of the proposed methodology a set of experi-
ments was performed using two different datasets and metrics. In more details
the first database (see figure 2) was captured in our lab and contains 7 faces male
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and female all of them facing the camera. The second dataset (see figure 2) that
was used is the Photometric Database presented in [3] captured under a similar
setup having more than 300 faces. In both cases, the persons are assumed to
be still during the acquisition stage since a high speed camera was used for the
acquisition (i.e. 200 frames per second), eliminating the registration problem. In
the second stage of the evaluation procedure, photometric stereo is applied on
the input images of the databases and the 3D surface of each face is obtained.
The faces are aligned using manually placed markers and an affine transforma-
tion algorithm. Since the 3D faces are aligned a Lambertian model is used to
generate 2D images and shadow maps illuminated under all possible directions
(all the possible azimuth angles from 0 to 360, every 10 degrees, and elevation
angles from 10 to 90 degrees, every 10 degrees) on a hemisphere as it is shown
in figure 3. These images at a resolution of 144 × 144 are using as input at the
t-SNE as a training set to generate a embedded low dimensional space repre-
sentation of the illumination variations and shadow deformations on a human
face in a low dimensional space. Consecutively, using the one leave out process,
where each subject is removed from the training set dataset and used for testing,
the faces are reconstructed using the estimated illumination directions for the
input images.

4.1 Illumination estimation

By using the previously mentioned leave-one-out schema, the performance of the
automatic illumination estimation can be evaluated as well as the capability of
the embedded space to generalise to new subjects out of the training dataset.
Results of the average angular error for each of the datasets are reported in table
1. Regarding the average angular error it was expected to be in that range since
two consecutive illumination sources are in range of 15 degrees, which explains
the results indicating that the estimated direction is always in the second-order
neighborhood. A particular case for subject 3 is depicted in figure 1.

Table 1. Overall performance of the angular estimation provided by the nearest neigh-
bour classifier on the illumination embedded space

Dataset 1 Dataset 2 [3]

Angular error [Degrees] 32.7536 33.5571

It can be concluded that the illumination embedded space is able to provide
a reasonably accurate estimation of the lighting direction, which can be now feed
into the reconstruction module.

4.2 Reconstruction performance

In order to evaluate the performance the average difference of the real and the
estimated heightmaps was used and furthermore the Hausdorff distance was used
to compare the reconstructions with the original profiles.
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Fig. 2. (Left) An example of faces part of the first dataset. (Right) An example of
faces part of the second dataset [3].

Fig. 3. Examples of possible illumination directions. Each dot on the hemisphere cor-
responds to a possible light l. It may be identified by its azimuth angle ϕl and its zenith
angle θl.

Fig. 4. Reconstructed surfaces using the proposed method with unknown illumination
on the right and the ground truth on the left under different view points for the first
dataset.

Fig. 5. The error difference between the reconstructed faces knowing the light direc-
tions and the one without for the first dataset.

In more details for the first dataset the results are summarized in Table 2
and examples of the reconstructed surfaces and the height maps are shown in
figure 4. Also, the error difference between the reconstructed faces knowing the
light directions and the one without is shown in figure 5. The same experiments
were also performed for the second dataset and the obtained results are shown
in Table 3 and examples of the obtained surfaces are shown in figures 6 and 7. In
more details, for each dataset two tests were performed and in each test scenario
three or four different images were used as input to the reconstruction system.
The obtained height map in each scenario was compared with the equivalent
height map obtained by the same input images but knowing the illumination
directions.
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Fig. 6. Reconstructed surfaces using the proposed method with unknown illumination
on the right and the ground truth on the left under different view points for the second
dataset.

Fig. 7. The error difference between the reconstructed faces knowing the light direc-
tions and the one without for the second dataset.
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Fig. 8. Examples of profile views used to calculate the Hausdorff distance.

The proposed algorithm was further evaluated using the the Hausdorff dis-
tance comparing the surfaces obtained with and without any illumination infor-
mation. In figure 8 results of the reconstructed faces obtained from the two cases
are shown. Observing the results it can be inferred that the proposed method-
ology results very accurate estimates without knowing the light directions. In
particularly, the side view was used to evaluate the performance of the proposed
approach. The background was extracted manually and the Hausdorff distance
was used to compare the reconstructions with the original profiles. Table 4 shows
the average results for all the faces.

5 Conclusions

In this paper, a method for 3D face reconstruction using photometric stereo
with unknowing lights was proposed. A dimensionality reduction method was
introduced to represent the face deformations due to the illumination variations
and the self shadows in a lower space. The obtained mapping function was used
to determine the illumination direction of each input image and that direction
was used to apply photometric stereo. Experiments with faces were performed in
order to evaluate the performance of the proposed scheme in a comparative study.
From the experiments it was shown that the proposed approach results very
accurate 3D surfaces without knowing the light directions and with a very small
differences compared to the case of known directions. As a result the proposed
approach is more general and requires less restrictions and information for the
acquisition environment, allowing further applications on 3D face recognition
and tracking.
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Table 2. The accuracy of the proposed photometric stereo method for faces with
unknown illumination directions in terms of height map percentage error over the
ground truth (case of known directions) for the first dataset.

Average Height Error Scenario A Scenario B

Proposed Method 1.4974% 1.1161%

Schindler [25] 2.1775% 1.5553%

Table 3. The accuracy of the proposed photometric stereo method for faces with
unknown illumination directions in terms of height map percentage error over the
ground truth (case of known directions) for the second dataset [3].

Average Height Error Scenario A Scenario B

Proposed Method 3.0963% 2.7450%
Schindler [25] 3.7831% 2.9806%
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