315 research outputs found

    Nature of hypergraph k -core percolation problems

    Get PDF
    Hypergraphs are higher-order networks that capture the interactions between two or more nodes. Hypergraphs can always be represented by factor graphs, i.e., bipartite networks between nodes and factor nodes (representing groups of nodes). Despite this universal representation, here we reveal that k-core percolation on hypergraphs can be significantly distinct from k-core percolation on factor graphs. We formulate the theory of hypergraph k-core percolation based on the assumption that a hyperedge can be intact only if all its nodes are intact. This scenario applies, for instance, to supply chains where the production of a product requires all raw materials and all processing steps; in biology it applies to protein-interaction networks where protein complexes can function only if all the proteins are present; and it applies as well to chemical reaction networks where a chemical reaction can take place only when all the reactants are present. Formulating a message-passing theory for hypergraph k-core percolation, and combining it with the theory of critical phenomena on networks, we demonstrate sharp differences with previously studied factor graph k-core percolation processes where it is allowed for hyperedges to have one or more damaged nodes and still be intact. To solve the dichotomy between k-core percolation on hypegraphs and on factor graphs, we define a set of pruning processes that act either exclusively on nodes or exclusively on hyperedges and depend on their second-neighborhood connectivity. We show that the resulting second-neighbor k-core percolation problems are significantly distinct from each other. Moreover we reveal that although these processes remain distinct from factor graphs k-core processes, when the pruning process acts exclusively on hyperedges the phase diagram is reduced to the one of factor graph k-cores

    Correlated edge overlaps in multiplex networks

    Get PDF
    This work was partially supported by the FET proactive IP project MULTIPLEX 317532. G.J.B. was supported by the FCT Grant No. SFRH/BPD/74040/2010

    Complex network view of evolving manifolds

    Get PDF
    We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite-dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h-holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.Comment: 14 pages, 15 figure

    Popularity versus Similarity in Growing Networks

    Full text link
    Popularity is attractive -- this is the formula underlying preferential attachment, a popular explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections that nodes have follows power laws observed in many real networks. Preferential attachment has been directly validated for some real networks, including the Internet. Preferential attachment can also be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks, or duplication. Here we show that popularity is just one dimension of attractiveness. Another dimension is similarity. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which popularity preference emerges from local optimization. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon

    Second-Order Assortative Mixing in Social Networks

    Full text link
    In a social network, the number of links of a node, or node degree, is often assumed as a proxy for the node's importance or prominence within the network. It is known that social networks exhibit the (first-order) assortative mixing, i.e. if two nodes are connected, they tend to have similar node degrees, suggesting that people tend to mix with those of comparable prominence. In this paper, we report the second-order assortative mixing in social networks. If two nodes are connected, we measure the degree correlation between their most prominent neighbours, rather than between the two nodes themselves. We observe very strong second-order assortative mixing in social networks, often significantly stronger than the first-order assortative mixing. This suggests that if two people interact in a social network, then the importance of the most prominent person each knows is very likely to be the same. This is also true if we measure the average prominence of neighbours of the two people. This property is weaker or negative in non-social networks. We investigate a number of possible explanations for this property. However, none of them was found to provide an adequate explanation. We therefore conclude that second-order assortative mixing is a new property of social networks.Comment: Cite as: Zhou S., Cox I.J., Hansen L.K. (2017) Second-Order Assortative Mixing in Social Networks. In: Goncalves B., Menezes R., Sinatra R., Zlatic V. (eds) Complex Networks VIII. CompleNet 2017. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-54241-6_

    Local majority dynamics on preferential attachment graphs

    Full text link
    Suppose in a graph GG vertices can be either red or blue. Let kk be odd. At each time step, each vertex vv in GG polls kk random neighbours and takes the majority colour. If it doesn't have kk neighbours, it simply polls all of them, or all less one if the degree of vv is even. We study this protocol on the preferential attachment model of Albert and Barab\'asi, which gives rise to a degree distribution that has roughly power-law P(x)1x3P(x) \sim \frac{1}{x^{3}}, as well as generalisations which give exponents larger than 33. The setting is as follows: Initially each vertex of GG is red independently with probability α<12\alpha < \frac{1}{2}, and is otherwise blue. We show that if α\alpha is sufficiently biased away from 12\frac{1}{2}, then with high probability, consensus is reached on the initial global majority within O(logdlogdt)O(\log_d \log_d t) steps. Here tt is the number of vertices and d5d \geq 5 is the minimum of kk and mm (or m1m-1 if mm is even), mm being the number of edges each new vertex adds in the preferential attachment generative process. Additionally, our analysis reduces the required bias of α\alpha for graphs of a given degree sequence studied by the first author (which includes, e.g., random regular graphs)

    Structural efficiency of percolation landscapes in flow networks

    Get PDF
    Complex networks characterized by global transport processes rely on the presence of directed paths from input to output nodes and edges, which organize in characteristic linked components. The analysis of such network-spanning structures in the framework of percolation theory, and in particular the key role of edge interfaces bridging the communication between core and periphery, allow us to shed light on the structural properties of real and theoretical flow networks, and to define criteria and quantities to characterize their efficiency at the interplay between structure and functionality. In particular, it is possible to assess that an optimal flow network should look like a "hairy ball", so to minimize bottleneck effects and the sensitivity to failures. Moreover, the thorough analysis of two real networks, the Internet customer-provider set of relationships at the autonomous system level and the nervous system of the worm Caenorhabditis elegans --that have been shaped by very different dynamics and in very different time-scales--, reveals that whereas biological evolution has selected a structure close to the optimal layout, market competition does not necessarily tend toward the most customer efficient architecture.Comment: 8 pages, 5 figure

    Correlation between clustering and degree in affiliation networks

    Full text link
    We are interested in the probability that two randomly selected neighbors of a random vertex of degree (at least) kk are adjacent. We evaluate this probability for a power law random intersection graph, where each vertex is prescribed a collection of attributes and two vertices are adjacent whenever they share a common attribute. We show that the probability obeys the scaling kδk^{-\delta} as k+k\to+\infty. Our results are mathematically rigorous. The parameter 0δ10\le \delta\le 1 is determined by the tail indices of power law random weights defining the links between vertices and attributes

    A measure of individual role in collective dynamics

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure. We show that dynamical influence measures explicitly how strongly a node's dynamical state affects collective behavior. For critical spreading, dynamical influence targets nodes according to their spreading capabilities. For diffusive processes it quantifies how efficiently real systems may be controlled by manipulating a single node.Comment: accepted for publication in Scientific Report

    Scaling Laws in Human Language

    Get PDF
    Zipf's law on word frequency is observed in English, French, Spanish, Italian, and so on, yet it does not hold for Chinese, Japanese or Korean characters. A model for writing process is proposed to explain the above difference, which takes into account the effects of finite vocabulary size. Experiments, simulations and analytical solution agree well with each other. The results show that the frequency distribution follows a power law with exponent being equal to 1, at which the corresponding Zipf's exponent diverges. Actually, the distribution obeys exponential form in the Zipf's plot. Deviating from the Heaps' law, the number of distinct words grows with the text length in three stages: It grows linearly in the beginning, then turns to a logarithmical form, and eventually saturates. This work refines previous understanding about Zipf's law and Heaps' law in language systems.Comment: 6 pages, 4 figure
    corecore