608 research outputs found

    Comparative efficacy of two microdoses of a potentized homoeopathic drug, Cadmium Sulphoricum, in reducing genotoxic effects produced by cadmium chloride in mice: a time course study

    Get PDF
    BACKGROUND: Cadmium poisoning in the environment has assumed an alarming problem in recent years. Effective antimutagenic agents which can reverse or combat cadmium induced genotoxicity in mice have not yet been reported. Therefore, in the present study, following the homeopathic principle of "like cures like", we tested the efficacy of two potencies of a homeopathic drug, Cadmium Sulphoricum (Cad Sulph), in reducing the genotoxic effects of Cadmium chloride in mice. Another objective was to determine the relative efficacy of three administrative modes, i.e. pre-, post- and combined pre and post-feeding of the homeopathic drugs. For this, healthy mice, Mus musculus, were intraperitoneally injected with 0.008% solution of CdCl(2) @ 1 ml/100 gm of body wt (i.e. 0.8 mcg/gm of bw), and assessed for the genotoxic effects through such studies as chromosome aberrations (CA), micronucleated erythrocytes (MNE), mitotic index (MI) and sperm head anomaly (SHA), keeping suitable succussed alcohol fed (positive) and CdCl(2) untreated normal (negative) controls. The CdCl(2) treated mice were divided into 3 subgroups, which were orally administered with the drug prior to, after and both prior to and after injection of CdCl(2) at specific fixation intervals and their genotoxic effects were analyzed. RESULTS: While the CA, MNE and SHA were reduced in the drug fed series as compared to their respective controls, the MI showed an apparent increase. The combined pre- and post-feeding of Cad Sulph showed maximum reduction of the genotoxic effects. CONCLUSIONS: Both Cad Sulph-30 and 200 were able to combat cadmium induced genotoxic effects in mice and that combined pre- and post-feeding mode of administration was found to be most effective in reducing the genotoxic effect of CdCl(2) followed by the post-feeding mode

    Karyotype, Sex Determination, and Meiotic Chromosome Behavior in Two Pholcid (Araneomorphae, Pholcidae) Spiders: Implications for Karyotype Evolution

    Get PDF
    There are 1,111 species of pholcid spiders, of which less than 2% have published karyotypes. Our aim in this study was to determine the karyotypes and sex determination mechanisms of two species of pholcids: Physocyclus mexicanus (Banks, 1898) and Holocnemus pluchei (Scopoli, 1763), and to observe sex chromosome behavior during meiosis. We constructed karyotypes for P. mexicanus and H. pluchei using information from both living and fixed cells. We found that P. mexicanus has a chromosome number of 2n = 15 in males and 2n = 16 in females with X0-XX sex determination, like other members of the genus Physocyclus. H. pluchei has a chromosome number of 2n = 28 in males and 2n = 28 in females with XY-XX sex determination, which is substantially different from its closest relatives. These data contribute to our knowledge of the evolution of this large and geographically ubiquitous family, and are the first evidence of XY-XX sex determination in pholcids

    Radiative contribution to neutrino masses and mixing in μν\mu\nuSSM

    Full text link
    In an extension of the minimal supersymmetric standard model (popularly known as the μν\mu\nuSSM), three right handed neutrino superfields are introduced to solve the μ\mu-problem and to accommodate the non-vanishing neutrino masses and mixing. Neutrino masses at the tree level are generated through R−R-parity violation and seesaw mechanism. We have analyzed the full effect of one-loop contributions to the neutrino mass matrix. We show that the current three flavour global neutrino data can be accommodated in the μν\mu\nuSSM, for both the tree level and one-loop corrected analyses. We find that it is relatively easier to accommodate the normal hierarchical mass pattern compared to the inverted hierarchical or quasi-degenerate case, when one-loop corrections are included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other minor changes, references adde

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    Chromosomes of Theridiidae spiders (Entelegynae): Interspecific karyotype diversity in Argyrodes and diploid number intraspecific variability in Nesticodes rufipes

    Get PDF
    Theridiidae is a derived family within the Araneoidea clade. In contrast to closely related groups, the 2n(male) = 20+X1 X 2 with acro/telocentric chromosomes is the most widespread karyotype among the theridiid spiders. In this work, the cytogenetic analysis of Argyrodes elevatus revealed original chromosome features different from those previously registered for Theridiidae, including the presence of 2n(male) = 20+X with meta/submetacentric chromosomes. Most individuals of Nesticodes rufipes showed family conserved karyotype characteristics. However, one individual had a 2n(male) = 24 due to the presence of an extra chromosome pair, which exhibited regular behavior and reductional segregation during meiosis. After silver staining, mitotic cells exhibited NORs localized on the terminal regions of the short arms of pairs 2, 3, and 4 of A. elevatus and on the terminal regions of long arms of pair 4 of N. rufipes. The comparative analysis with data from phylogenetically related species allowed the clarification of the origin of the interspecific and intraspecific chromosome variability observed in Argyrodes and in N. rufipes, respectively

    Physical Confirmation and Mapping of Overlapping Rat Mammary Carcinoma Susceptibility QTLs, Mcs2 and Mcs6

    Get PDF
    Only a portion of the estimated heritability of breast cancer susceptibility has been explained by individual loci. Comparative genetic approaches that first use an experimental organism to map susceptibility QTLs are unbiased methods to identify human orthologs to target in human population-based genetic association studies. Here, overlapping rat mammary carcinoma susceptibility (Mcs) predicted QTLs, Mcs6 and Mcs2, were physically confirmed and mapped to identify the human orthologous region. To physically confirm Mcs6 and Mcs2, congenic lines were established using the Wistar-Furth (WF) rat strain, which is susceptible to developing mammary carcinomas, as the recipient (genetic background) and either Wistar-Kyoto (WKy, Mcs6) or Copenhagen (COP, Mcs2), which are resistant, as donor strains. By comparing Mcs phenotypes of WF.WKy congenic lines with distinct segments of WKy chromosome 7 we physically confirmed and mapped Mcs6 to ∼33 Mb between markers D7Rat171 and gUwm64-3. The predicted Mcs2 QTL was also physically confirmed using segments of COP chromosome 7 introgressed into a susceptible WF background. The Mcs6 and Mcs2 overlapping genomic regions contain multiple annotated genes, but none have a clear or well established link to breast cancer susceptibility. Igf1 and Socs2 are two of multiple potential candidate genes in Mcs6. The human genomic region orthologous to rat Mcs6 is on chromosome 12 from base positions 71,270,266 to 105,502,699. This region has not shown a genome-wide significant association to breast cancer risk in pun studies of breast cancer susceptibility

    Graphite Epoxy Defect Classification of Ultrasonic Signatures Using Statistical and Neural Network Techniques

    Full text link
    The use of graphite epoxy composite materials in thick sections for structural applications in naval vessels is achieving worldwide interest [1]. Current and future applications of composites include construction of hulls, superstructures, weight critical articles, secondary structures and quasi-structural components.</p

    Mycobacterium tuberculosis WhiB3 Maintains Redox Homeostasis by Regulating Virulence Lipid Anabolism to Modulate Macrophage Response

    Get PDF
    The metabolic events associated with maintaining redox homeostasis in Mycobacterium tuberculosis (Mtb) during infection are poorly understood. Here, we discovered a novel redox switching mechanism by which Mtb WhiB3 under defined oxidizing and reducing conditions differentially modulates the assimilation of propionate into the complex virulence polyketides polyacyltrehaloses (PAT), sulfolipids (SL-1), phthiocerol dimycocerosates (PDIM), and the storage lipid triacylglycerol (TAG) that is under control of the DosR/S/T dormancy system. We developed an in vivo radio-labeling technique and demonstrated for the first time the lipid profile changes of Mtb residing in macrophages, and identified WhiB3 as a physiological regulator of virulence lipid anabolism. Importantly, MtbΔwhiB3 shows enhanced growth on medium containing toxic levels of propionate, thereby implicating WhiB3 in detoxifying excess propionate. Strikingly, the accumulation of reducing equivalents in MtbΔwhiB3 isolated from macrophages suggests that WhiB3 maintains intracellular redox homeostasis upon infection, and that intrabacterial lipid anabolism functions as a reductant sink. MtbΔwhiB3 infected macrophages produce higher levels of pro- and anti-inflammatory cytokines, indicating that WhiB3-mediated regulation of lipids is required for controlling the innate immune response. Lastly, WhiB3 binds to pks2 and pks3 promoter DNA independent of the presence or redox state of its [4Fe-4S] cluster. Interestingly, reduction of the apo-WhiB3 Cys thiols abolished DNA binding, whereas oxidation stimulated DNA binding. These results confirmed that WhiB3 DNA binding is reversibly regulated by a thiol-disulfide redox switch. These results introduce a new paradigmatic mechanism that describes how WhiB3 facilitates metabolic switching to fatty acids by regulating Mtb lipid anabolism in response to oxido-reductive stress associated with infection, for maintaining redox balance. The link between the WhiB3 virulence pathway and DosR/S/T signaling pathway conceptually advances our understanding of the metabolic adaptation and redox-based signaling events exploited by Mtb to maintain long-term persistence
    • …
    corecore