4 research outputs found
Data-driven reverse engineering of signaling pathways using ensembles of dynamic models
Signaling pathways play a key role in complex diseases such as cancer, for which the development of novel therapies is a difficult, expensive and laborious task. Computational models that can predict the effect of a new combination of drugs without having to test it experimentally can help in accelerating this process. In particular, network-based dynamic models of these pathways hold promise to both understand and predict the effect of therapeutics. However, their use is currently hampered by limitations in our knowledge of the underlying biochemistry, as well as in the experimental and computational technologies used for calibrating the models. Thus, the results from such models need to be carefully interpreted and used in order to avoid biased predictions. Here we present a procedure that deals with this uncertainty by using experimental data to build an ensemble of dynamic models. The method incorporates steps to reduce overfitting and maximize predictive capability. We find that by combining the outputs of individual models in an ensemble it is possible to obtain a more robust prediction. We report results obtained with this method, which we call SELDOM (enSEmbLe of Dynamic lOgic-based Models), showing that it improves the predictions previously reported for several challenging problems.JRB and DH acknowledge funding from the EU FP7 project NICHE (ITN Grant number 289384). JRB acknowledges funding from the Spanish MINECO project SYNBIOFACTORY (grant number DPI2014-55276-C5-2-R). AFV acknowledges funding from the Galician government (Xunta de Galiza) through the I2C postdoctoral fellowship ED481B2014/133-0. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio
Stability in GRN inference
Reconstructing a gene regulatory network from one or more sets of omics measurements has been a major task of computational biology in the last twenty years. Despite an overwhelming number of algorithms proposed to solve the network inference problem either in the general scenario or in a ad-hoc tailored situation, assessing the stability of reconstruction is still an uncharted territory and exploratory studies mainly tackled theoretical aspects. We introduce here empirical stability, which is induced by variability of reconstruction as a function of data subsampling. By evaluating differences between networks that are inferred using different subsets of the same data we obtain quantitative indicators of the robustness of the algorithm, of the noise level affecting the data, and, overall, of the reliability of the reconstructed graph. We show that empirical stability can be used whenever no ground truth is available to compute a direct measure of the similarity
between the inferred structure and the true network. The main ingredient here is a suite of indicators, called NetSI, providing statistics of distances between graphs generated by a given algorithm fed with different data subsets, where the chosen metric is the Hamming-Ipsen-Mikhailov (HIM) distance evaluating dissimilarity of graph topologies with shared nodes. Operatively, the NetSI family is demonstrated here on synthetic and high-throughput datasets, inferring graphs at different resolution levels (topology, direction, weight), showing how the stability indicators can be effectively used for the quantitative comparison of the stability of different reconstruction algorithms