163,511 research outputs found

    Covalent bonding of antibodies of polystyrene latex beads: A concept

    Get PDF
    Technique facilitates purification of vaccines and production of immunoadsorption columns exhibiting relatively long stability. Information interests biochemists, medical researchers, and pharmaceutical manufacturers

    Viscosity and Thermal Relaxation for a resonantly interacting Fermi gas

    Full text link
    The viscous and thermal relaxation rates of an interacting fermion gas are calculated as functions of temperature and scattering length, using a many-body scattering matrix which incorporates medium effects due to Fermi blocking of intermediate states. These effects are demonstrated to be large close to the transition temperature TcT_c to the superfluid state. For a homogeneous gas in the unitarity limit, the relaxation rates are increased by nearly an order of magnitude compared to their value obtained in the absence of medium effects due to the Cooper instability at TcT_c. For trapped gases the corresponding ratio is found to be about three due to the averaging over the inhomogeneous density distribution. The effect of superfluidity below TcT_c is considered to leading order in the ratio between the energy gap and the transition temperature.Comment: 7 pages, 3 figure

    Design and calibration of a rocket-borne electron spectrometer for investigation of particle ionization in the nighttime midlatitude E region

    Get PDF
    An explanation was developed for the formation, near midnight at midlatitudes, of a broad electron density layer extending approximately from 120 to 180 km and usually referred to as the intermediate E layer. The responsible mechanism is believed to be the converging vertical ion drifts resulting from winds of the solar semidiurnal tide. Numerical solutions of the continuity equation appropriate to the intermediate layer is described for particular models of ion drift, diffusion coefficents, and ionization production. Analysis of rocket observations of the layer show that the ionization rate is highly correlated with the planetary geomagnetic index, K sub p. Particle flux measurements support the idea that energetic electrons are the principal source of this ionization. A semiconductor spectrometer experiment for investigation of the particle flux, spectrum, and angular properties was designed and successfully flown on a Nike Apache rocket. A detailed description of the theory, design, and calibration of the experiment and some preliminary results presented

    Theoretical Transmission Spectra During Extrasolar Giant Planet Transits

    Get PDF
    The recent transit observation of HD 209458 b - an extrasolar planet orbiting a sun-like star - confirmed that it is a gas giant and determined that its orbital inclination is 85 degrees. This inclination makes possible investigations of the planet atmosphere. In this paper we discuss the planet transmission spectra during a transit. The basic tenet of the method is that the planet atmosphere absorption features will be superimposed on the stellar flux as the stellar flux passes through the planet atmosphere above the limb. The ratio of the planet's transparent atmosphere area to the star area is small, approximately 10^{-3} to 10^{-4}; for this method to work very strong planet spectral features are necessary. We use our models of close-in extrasolar giant planets to estimate promising absorption signatures: the alkali metal lines, in particular the Na I and K I resonance doublets, and the He I 23S2^3S - 23P2^3P triplet line at 1083.0 nm. If successful, observations will constrain the line-of-sight temperature, pressure, and density. The most important point is that observations will constrain the cloud depth, which in turn will distinguish between different atmosphere models. We also discuss the potential of this method for EGPs at different orbital distances and orbiting non-solar-type stars.Comment: revised to agree with accepted paper, ApJ, in press. 12 page

    A rocket-borne pulse-height analyzer for energetic particle measurements

    Get PDF
    The pulse-height analyzer basically resembles a time-sharing multiplexing data-acquisition system which acquires analog data (from energetic particle spectrometers) and converts them into digital code. The PHA simultaneously acquires pulse-height information from the analog signals of the four input channels and sequentially multiplexes the digitized data to a microprocessor. The PHA together with the microprocessor form an on-board real-time data-manipulation system. The system processes data obtained during the rocket flight and reduces the amount of data to be sent back to the ground station. Consequently the data-reduction process for the rocket experiments is speeded up. By using a time-sharing technique, the throughput rate of the microprocessor is increased. Moreover, data from several particle spectrometers are manipulated to share one information channel; consequently, the TM capacity is increased

    Antenna servo control system characterization: Rate loop analysis for 34-m antenna at DSS 15

    Get PDF
    The elevation and azimuth servo rate loops at the 34-m High Efficiency Deep Space Station 15 (DSS 15) are described. Time and frequency response performance criteria were measured. The results are compared to theoretically deduced performance criteria. Unexpected anomalies in the frequency response are observed and identified

    A rocket-borne data-manipulation experiment using a microprocessor

    Get PDF
    The development of a data-manipulation experiment using a Z-80 microprocessor is described. The instrumentation is included in the payloads of two Nike Apache sounding rockets used in an investigation of energetic particle fluxes. The data from an array of solid-state detectors and an electrostatic analyzer is processed to give the energy spectrum as a function of pitch angle. The experiment performed well in its first flight test: Nike Apache 14.543 was launched from Wallops Island at 2315 EST on 19 June 1978. The system was designed to be easily adaptable to other data-manipulation requirements and some suggestions for further development are included

    A flight investigation of a terminal area navigation and guidance concept for STOL aircraft

    Get PDF
    A digital avionics system referred to as STOLAND has been test-flown in the NASA CV-340 to obtain performance data for time-controlled guidance in the manual flight director mode. The advanced system components installed in the cockpit included an electronic attitude director indicator and an electronic multifunction display. Navigation guidance and control computations were all performed in the digital computer. Approach paths were flown which included a narrow 180-deg turn and a 1-min, 5-deg straight-in approach to the 30-m altitude go-around point. Results are presented for 20 approaches: (1) blended radio/inertial navigation using TACAN and a microwave scanning beam landing guidance system (MODILS) permitted a smooth transition from area navigation (TACAN) to precision terminal navigation (MODILS), (2) guidance system (flight director) performance measured at an altitude of 30.5 m was within that prescribed for category II CTOL operations on a standard runway, and (3) time of arrival at a point about 2 mi from touchdown was about 4 sec plus or minus sec later than the computed nominal arrival time

    A rocket-borne electrostatic analyzer for measurement of energetic particle flux

    Get PDF
    A rocket-borne electrostatic analyzer experiment is described. It is used to measure energetic particle flux (0.9 to 14 keV) in the nighttime midlatitude E region. Energetic particle precipitation is believed to be a significant nighttime ionization source, particularly during times of high geomagnetic activity. The experiment was designed for use in the payload of a Nike Apache sounding rocket. The electrostatic analyzer employs two cylindrical parallel plates subtending a central angle of 90 deg. The voltage waveform supplied to the plates is a series of steps synchronized to the spin of the payload during flight. Both positive and negative voltages are provided, extending the detection capabilities of the instrument to both electrons and protons (and positive ions). The development, construction and operation of the instrument is described together with a preliminary evaluation of its performance in a rocket flight
    • …
    corecore