54 research outputs found

    Lentiviral Engineered Fibroblasts Expressing Codon Optimized COL7A1 Restore Anchoring Fibrils in RDEB

    Get PDF
    Cells therapies, engineered to secrete replacement proteins, are being developed to ameliorate otherwise debilitating diseases. Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects of type VII collagen (C7), a protein essential for anchoring fibril formation at the dermal-epidermal junction (DEJ). Whilst allogeneic fibroblasts injected directly into the dermis can mediate transient disease modulation, autologous gene-modified fibroblasts should evade immunological rejection and support sustained delivery of C7 at the DEJ. We demonstrate the feasibility of such an approach using a therapeutic grade, self-inactivating-lentiviral vector, encoding codon optimized COL7A1, to transduce RDEB fibroblasts under conditions suitable for clinical application. Expression and secretion of C7 was confirmed, with transduced cells exhibiting supra-normal levels of protein expression and ex vivo migration of fibroblasts was restored in functional assays. Gene modified RDEB fibroblasts also deposited C7 at the DEJ of human RDEB skin xenografts placed on NOD-scid IL2Rgamma(null) recipients, with reconstruction of human epidermal structure and regeneration of anchoring fibrils at the DEJ. Fibroblast mediated restoration of protein and structural defects in this RDEB model strongly supports proposed therapeutic applications in man

    A Deficiency of Ceramide Biosynthesis Causes Cerebellar Purkinje Cell Neurodegeneration and Lipofuscin Accumulation

    Get PDF
    Sphingolipids, lipids with a common sphingoid base (also termed long chain base) backbone, play essential cellular structural and signaling functions. Alterations of sphingolipid levels have been implicated in many diseases, including neurodegenerative disorders. However, it remains largely unclear whether sphingolipid changes in these diseases are pathological events or homeostatic responses. Furthermore, how changes in sphingolipid homeostasis shape the progression of aging and neurodegeneration remains to be clarified. We identified two mouse strains, flincher (fln) and toppler (to), with spontaneous recessive mutations that cause cerebellar ataxia and Purkinje cell degeneration. Positional cloning demonstrated that these mutations reside in the Lass1 gene. Lass1 encodes (dihydro)ceramide synthase 1 (CerS1), which is highly expressed in neurons. Both fln and to mutations caused complete loss of CerS1 catalytic activity, which resulted in a reduction in sphingolipid biosynthesis in the brain and dramatic changes in steady-state levels of sphingolipids and sphingoid bases. In addition to Purkinje cell death, deficiency of CerS1 function also induced accumulation of lipofuscin with ubiquitylated proteins in many brain regions. Our results demonstrate clearly that ceramide biosynthesis deficiency can cause neurodegeneration and suggest a novel mechanism of lipofuscin formation, a common phenomenon that occurs during normal aging and in some neurodegenerative diseases

    Novel animal models for studying complex brain disorders: BAC-driven miRNA-mediated in vivo silencing of gene expression

    Get PDF
    In schizophrenia, glutamic acid decarboxylase 1 (GAD1) disturbances are robust, consistently observed, cell-type specific and represent a core feature of the disease. In addition, neuropeptide Y (NPY), which is a phenotypic marker of a sub-population of GAD1-containing interneurons, has shown reduced expression in the prefrontal cortex in subjects with schizophrenia, suggesting that dysfunction of the NPY+ cortical interneuronal sub-population might be a core feature of this devastating disorder. However, modeling gene expression disturbances in schizophrenia in a cell type-specific manner has been extremely challenging. To more closely mimic these molecular and cellular human post-mortem findings, we generated a transgenic mouse in which we downregulated GAD1 mRNA expression specifically in NPY+ neurons. This novel, cell type-specific in vivo system for reducing gene expression uses a bacterial artificial chromosome (BAC) containing the NPY promoter-enhancer elements, the reporter molecule (eGFP) and a modified intron containing a synthetic microRNA (miRNA) targeted to GAD1. The animals of isogenic strains are generated rapidly, providing a new tool for better understanding the molecular disturbances in the GABAergic system observed in complex neuropsychiatric disorders such as schizophrenia. In the future, because of the small size of the silencing miRNAs combined with our BAC strategy, this method may be modified to allow generation of mice with simultaneous silencing of multiple genes in the same cells with a single construct, and production of splice-variant-specific knockdown animals
    • …
    corecore