119 research outputs found

    Evaluation of biodegradable polyester-co-lactone microparticles for protein delivery.

    Get PDF
    Abstract Poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL) was previously evaluated for the colloidal delivery of α-chymotrypsin. In this article, the effect of varying polymer molecular weight (MW) and chemistry on particle size and morphology; encapsulation efficiency; in vitro release; and the biological activity of α-chymotrypsin (α-CH) and lysozyme (LS) were investigated. Microparticles were prepared using emulsion solvent evaporation and evaluated by various methods. Altering the MW or monomer ratio of PGA-co-PDL did not significantly affect the encapsulation efficiency and overall poly(1,3-propanediol adipate-co-ω-pentadecalactone) (PPA-co-PDL) demonstrated the highest encapsulation efficiency. In vitro release varied between polymers, and the burst release for α-CH-loaded microparticles was lower when a higher MW PGA-co-PDL or more hydrophobic PPA-co-PDL was used. The results suggest that, although these co-polyesters could be useful for protein delivery, little difference was observed between the different PGA-co-PDL polymers and PPA-co-PDL generally provided a higher encapsulation and slower release of enzyme than the other polymers tested

    Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements

    Get PDF
    Replication fork inactivation can be overcome by homologous recombination, but this can cause gross chromosomal rearrangements that subsequently missegregate at mitosis, driving further chromosome instability. It is unclear when the chromosome rearrangements are generated and whether individual replication problems or the resulting recombination intermediates delay the cell cycle. Here we have investigated checkpoint activation during HR-dependent replication restart using a site-specific replication fork-arrest system. Analysis during a single cell cycle shows that HR-dependent replication intermediates arise in S phase, shortly after replication arrest, and are resolved into acentric and dicentric chromosomes in G2. Despite this, cells progress into mitosis without delay. Neither the DNA damage nor the intra-S phase checkpoints are activated in the first cell cycle, demonstrating that these checkpoints are blind to replication and recombination intermediates as well as to rearranged chromosomes. The dicentrics form anaphase bridges that subsequently break, inducing checkpoint activation in the second cell cycle

    The Neurotropic Parasite Toxoplasma Gondii Increases Dopamine Metabolism

    Get PDF
    The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s) responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists) and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans

    Canine classical seminoma: a specific malignant type with human classifications is highly correlated with tumor angiogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human seminoma is classified as classical seminoma (SE) and spermatocytic seminoma (SS). Human SE is known to be more malignant and metastasizing more frequently than SS. Tumor angiogenesis is highly related with tumor progression and metastasis, with microvessel density (MVD) being an important parameter of metastatic potential. Canine seminoma is not yet well-established as SE or SS type including correlation with angiogenesis. We classified canine SE and SS, and then compared them to tumor associated vessels.</p> <p>Methods</p> <p>Twenty-three cases of canine seminomas (2 intratubular, 9 diffuse, and 12 intratubular/diffuse seminomas showing both intratubular and diffuse patterns) were classified as SE or SS by immunohistochemistry (IHC) using monoclonal antibody against PLAP and by PAS stain. The histopathological data were then compared to see if there was a correlation with SE or SS. Angiogenesis of seminomas were evaluated by immunohistochemical assay using polyclonal antibody against Von Willebrand factor (vWF) and by calculating the means of MVD, vessels area and perimeters using computerized image analysis. Statistical Package for Social Sciences (SPSS) program was used for various statistical analyses.</p> <p>Results</p> <p>The numbers of PLAP+/PAS+ canine SEs were 8/23 (34.8%) and PLAP-/PAS- SSs were 15/23 (61.2%). All SE cases (8/8, 100%) were intratubular/diffuse types. SS types included 2 intratubular (2/15, 13.3%), 9 diffuse (9/15, 60%), and 4 intratubular/diffuse (4/15, 26.7%) types. MVD and vascular parameters in SEs were significantly higher than in SSs, showing the highest value in the intratubular/diffuse type. Seminomas observed with neoplastic cells invasion of vessels presented higher perimeter and area values than seminomas without conformed neoplastic cells invasion.</p> <p>Conclusion</p> <p>In this study, we demonstrated a positive relationship between canine SE and tumor angiogenesis. Furthermore, we also showed that a tumor cells invasion of vessels were a correlated vascular parameter. Although metastasis of canine seminomas has rarely been reported, our results support that canine SE could have high metastatic potential similar to the human counterpart. Further studies are required to clarify the relationship between canine SE and clinical data with metastatic factors.</p

    Meiotic Recombination Intermediates Are Resolved with Minimal Crossover Formation during Return-to-Growth, an Analogue of the Mitotic Cell Cycle

    Get PDF
    Accurate segregation of homologous chromosomes of different parental origin (homologs) during the first division of meiosis (meiosis I) requires inter-homolog crossovers (COs). These are produced at the end of meiosis I prophase, when recombination intermediates that contain Holliday junctions (joint molecules, JMs) are resolved, predominantly as COs. JM resolution during the mitotic cell cycle is less well understood, mainly due to low levels of inter-homolog JMs. To compare JM resolution during meiosis and the mitotic cell cycle, we used a unique feature of Saccharomyces cerevisiae, return to growth (RTG), where cells undergoing meiosis can be returned to the mitotic cell cycle by a nutritional shift. By performing RTG with ndt80 mutants, which arrest in meiosis I prophase with high levels of interhomolog JMs, we could readily monitor JM resolution during the first cell division of RTG genetically and, for the first time, at the molecular level. In contrast to meiosis, where most JMs resolve as COs, most JMs were resolved during the first 1.5–2 hr after RTG without producing COs. Subsequent resolution of the remaining JMs produced COs, and this CO production required the Mus81/Mms4 structure-selective endonuclease. RTG in sgs1-ΔC795 mutants, which lack the helicase and Holliday junction-binding domains of this BLM homolog, led to a substantial delay in JM resolution; and subsequent JM resolution produced both COs and NCOs. Based on these findings, we suggest that most JMs are resolved during the mitotic cell cycle by dissolution, an Sgs1 helicase-dependent process that produces only NCOs. JMs that escape dissolution are mostly resolved by Mus81/Mms4-dependent cleavage that produces both COs and NCOs in a relatively unbiased manner. Thus, in contrast to meiosis, where JM resolution is heavily biased towards COs, JM resolution during RTG minimizes CO formation, thus maintaining genome integrity and minimizing loss of heterozygosity

    Of risks and regulations: how leading U.S. nanoscientists form policy stances about nanotechnology

    Get PDF
    Even though there is a high degree of scientific uncertainty about the risks of nanotechnology, many scholars have argued that policy-making cannot be placed on hold until risk assessments are complete (Faunce, Med J Aust 186(4):189–191, 2007; Kuzma, J Nanopart Res 9(1):165–182, 2007; O’Brien and Cummins, Hum Ecol Risk Assess 14(3):568–592, 2008; Powell et al., Environ Manag 42(3):426–443, 2008). In the absence of risk assessment data, decision makers often rely on scientists’ input about risks and regulation to make policy decisions. The research we present here goes beyond the earlier descriptive studies about nanotechnology regulation to explore the heuristics that the leading U.S. nanoscientists use when they make policy decisions about regulating nanotechnology. In particular, we explore the relationship between nanoscientists’ risk and benefit perceptions and their support for nanotech regulation. We conclude that nanoscientists are more supportive of regulating nanotechnology when they perceive higher levels of risks; yet, their perceived benefits about nanotechnology do not significantly impact their support for nanotech regulation. We also find some gender and disciplinary differences among the nanoscientists. Males are less supportive of nanotech regulation than their female peers and materials scientists are more supportive of nanotechnology regulation than scientists in other fields. Lastly, our findings illustrate that the leading U.S. nanoscientists see the areas of surveillance/privacy, human enhancement, medicine, and environment as the nanotech application areas that are most in need of new regulations

    A New Mechanistic Scenario for the Origin and Evolution of Vertebrate Cartilage

    Get PDF
    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate “new head”. Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed vertebrates
    corecore