
PROOF COVER SHEET

Author(s): Hesham M. Tawfeek, Sayed H. Khidr, Eman M. Samy, Sayed M. Ahmed, Elsie E. Gaskell, and
Gillian A. Hutcheon

Article title: Evaluation of biodegradable polyester-co-lactone microparticles for protein delivery

Article no: LDDI_A_814060

Enclosures: 1) Query sheet
2) Article proofs

Dear Author,
Please check these proofs carefully. It is the responsibility of the corresponding author to check against the original manuscript

and approve or amend these proofs. A second proof is not normally provided. Informa Healthcare cannot be held responsible for

uncorrected errors, even if introduced during the composition process. The journal reserves the right to charge for excessive

author alterations, or for changes requested after the proofing stage has concluded.

The following queries have arisen during the editing of your manuscript and are marked in the margins of the proofs.
Unless advised otherwise, submit all corrections using the CATS online correction form. Once you have added all your
corrections, please ensure you press the ‘‘Submit All Corrections’’ button.

Please review the table of contributors below and confirm that the first and last names are structured correctly and that
the authors are listed in the correct order of contribution.

Contrib.
No.

Prefix Given name(s) Surname Suffix

1 Hesham M. Tawfeek

2 Sayed H. Khidr

3 Eman M. Samy

4 Sayed M. Ahmed

5 Elsie E. Gaskell

6 Gillian A. Hutcheon

AUTHOR QUERIES

Q1: Please provide complete details for reference 57. Please note reference 56 is also missing

Q2: Please provide figure caption for ‘‘Figure 2’’.

Q3: Please provide better quality artwork for figure 3.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/42476691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


http://informahealthcare.com/ddi
ISSN: 0363-9045 (print), 1520-5762 (electronic)

Drug Dev Ind Pharm, Early Online: 1–10
! 2013 Informa Healthcare USA, Inc. DOI: 10.3109/03639045.2013.814060

Evaluation of biodegradable polyester-co-lactone microparticles for
protein delivery
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Abstract

Poly(glycerol adipate-co-o-pentadecalactone) (PGA-co-PDL) was previously evaluated for the
colloidal delivery of a-chymotrypsin. In this article, the effect of varying polymer molecular
weight (MW) and chemistry on particle size and morphology; encapsulation efficiency; in vitro
release; and the biological activity of a-chymotrypsin (a-CH) and lysozyme (LS) were
investigated. Microparticles were prepared using emulsion solvent evaporation and evaluated
by various methods. Altering the MW or monomer ratio of PGA-co-PDL did not significantly
affect the encapsulation efficiency and overall poly(1,3-propanediol adipate-co-o-pentadeca-
lactone) (PPA-co-PDL) demonstrated the highest encapsulation efficiency. In vitro release varied
between polymers, and the burst release for a-CH-loaded microparticles was lower when a
higher MW PGA-co-PDL or more hydrophobic PPA-co-PDL was used. The results suggest that,
although these co-polyesters could be useful for protein delivery, little difference observed
between the different PGA-co-PDL polymers and PPA-co-PDL generally provided a higher
encapsulation and slower release of enzyme than the other polymers tested.
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Introduction

Numerous protein and peptide pharmaceuticals such as recom-
binant human growth hormone, gaserelin acetate, leuprolide
acetate and recombinant bovine somatropin have already received
approval from regulating authorities worldwide1. However, there
are many difficulties associated with delivering biopharmaceut-
ical drugs. The oral route of administration of proteins results in
substantial degradation and poor bioavailability2, therefore,
parenteral delivery is usually preferred. However, proteins often
exhibit short half-lives in serum, thus requiring frequent admin-
istration to maintain their plasma level3. To prolong the
therapeutic level of proteins, controlled release is required and
this can be achieved using biodegradable polymers4. A range of
formulation methods have been utilized to encapsulate proteins in
polymeric micro- and nanoparticles, but water-in-oil-in-water
(w/o/w) emulsion solvent evaporation is the most frequently used
method. Difficulties in the encapsulation of proteins are related to
their high molecular weight (MW), high water solubility and
instability upon exposure to formulation conditions5. An initial
burst release followed by slow, incomplete release of the native
protein as a result of protein instability and aggregation has also
been recognized as a major problem6. Interactions between the
protein and the polymer also influence the release profile. These
interactions are dependent on protein MW; isoelectric point;

amino acid composition; and hydrophobicity, as well as polymer
MW and chemistry1. Polymer properties such as MW, copolymer
composition and crystallinity can also be tailored to alter polymer
degradation and subsequent drug release profiles7,8. For example,
an increase in the MW of Poly(lactic-co-glycolic acid) (PLGA)
resulted in longer degradation times and slower release of bovine
serum albumin and tetanus toxid9,10. Bovine serum albumin
(BSA) and lysozyme (LS) were encapsulated using two different
MWs of PLGA by (w/o/w) solvent extraction and oil-in-oil (o/o)
solvent evaporation systems11. BSA was efficiently encapsulated
independently of PLGA MW, whereas the encapsulation of LS was
favored with low MW PLGA.

Although the choice of polymer is critical, few new polymers
have been developed for specific drug delivery applications, and
mono- and copolymers of poly(lactic acid) (PLA) and poly(gly-
colic acid) (PGA) are commonly adopted due to their widespread
availability and approval for human use. One alternative is to
develop new polymeric delivery systems to release the protein and
retain bioactivity over the required target period12.

A family of biodegradable polyesters with backbone function-
ality, synthesized via the enzyme catalyzed transesterification of a
combination of activated diacids, glycerol and lactone monomers
has been designed to overcome the lack of chemical functionality
of the commonly used polyesters13,14. The free hydroxyl group
from the glycerol monomer allows for the attachment of chemical
moieties such as pharmaceutically active drugs, hence introducing
the potential for the controlled incorporation and release of
desired molecules (drugs, proteins and peptides). In addition, the
physical characteristics (hydrophilicity and hydrophobicity) of
these polymers can easily be manipulated by varying the
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backbone chemistry15. Previously, poly(glycerol adipate) (PGA)
and poly(glycerol adipate-co-o-pentadecalactone) (PGA-co-PDL)
have been investigated for the delivery of dexamethasone
phosphate16 and ibuprofen17. More recently, PGA-co-PDL has
shown promise as a sustained release carrier for pulmonary
delivery using the model drug, sodium flourescein18. PGA-
co-PDL (1:1:1, MW 30.0 KDa) has also previously been used to
prepare a-chymotrypsin (a-CH)-loaded microparticles via
the double (w/o/w) emulsion solvent evaporation method19,20.
In the initial w/o emulsification step, a lipophilic surfactant is
incorporated to aid the emulsification of the aqueous drug
solution and the organic phase containing the polymer. Gaskell
et al. found that on average 22.1 mg a-CH per 1 mg PGA-co-PDL
was encapsulated, and there was a loss of enzyme bioactivity
during encapsulation followed by a further gradual loss upon
release19. The low amount of a-CH encapsulated is typical of
these systems due to the diffusion of the protein from the inner to
outer aqueous phases during particle formation and upon solvent
evaporation. These different previous studies have all utilized a
1;1;1 ratio of monomers, and the MW of the particular polymers
used varied depending upon the MW achieved during synthesis.

Which, given the nature of these reactions, can be difficult to
precisely control. It is therefore not known whether the copolymer
composition or MW may influence the characteristics of the
particles formed.

Polymer properties such as molecular weight Mw, copolymer
composition and crystallinity can be tailored to alter polymer
degradation and the consequent drug release profiles as well as
the microparticles characteristics. The nature of the protein
encapsulated can also affect the particle formation, loading,
release and bioactivity profiles21.

Therefore this study is an extension of the work presented by
Gaskell et al., examining the effect of small changes in polymer
Mw and copolymer composition on the encapsulation efficiency,
loading, particle size, morphology, in vitro release and bioactivity
of two different proteins, a-CH (25 kDa) and LS (14 kDa). These
enzymes differ in size (LS, 14 KDa, a-CH, 25 KDa), isoelectric
point (LS, 11.2, a-CH, 9.1) and stability (LS is more stable than
a-CH).

Materials and methods

Materials

Novozyme 435 (a lipase from Candida antarctica immobilized on
a microporous acrylic resin) was purchased from Bio Catalytics
(USA) and stored over P2O5 at 5�C prior to use. Glycerol, 1.3-
propandiol, o-pentadecalactone, a-chymotrypsin (type II from
bovine pancreas), lysozyme (from chicken egg white), aerosol OT
(dioctyl sodium sulphosuccinate), poly(vinyl alcohol) (PVA, MW

9–10 KDa, 80% hydrolyzed), azocasein, 4-methylumbelliferyl
b-D-N,N0,N00-triacetylchitotrioside, citric acid, trichloroacetic
acid (TCA) and sodium citrate were all obtained from Sigma-
Aldrich Chemicals (UK). Dichloromethane and N-[2-hydro-
xyethyl]piperazine-N’-[2-ethanesulphonic acid] (HEPES) were
purchased from BDH (UK). Tetrahydrofuran (THF) was

purchased from Fisher Scientific. Phosphate buffered saline
tablets at pH 7.4 were obtained from Oxoid (UK). Divinyl
adipate (DVA) was obtained from Fluorochem (UK). A polystyr-
ene standards kit was purchased from Supelco (USA).

Polymer synthesis

The copolymers PGA-co-PDL and PPA-co-PDL were synthe-
sized, processed and characterized using methods adapted from
Thompson et al.22 and further described by Gaskell et al.19

Polymer MW was varied by controlling the reaction time.
Reaction times of 6, 18 and 24 h were used to prepare PGA-
co-PDL (1:1:1) with a MW of 11.4, 26.0 and 39.2 KDa,
respectively. The ratio of divinyl adipate (DVA) and glycerol
(1:1) to o-pentadecalactone was varied to produce polymers
theoretically containing 1:1:0.5 and 1:1:1.5 of DVA, glycerol and
o-pentadecalactone, respectively. Using the same reaction condi-
tions, PPA-co-PDL with a Mw of 22.0 KDa was synthesized from
a 1:1:1 molar ratio of DVA: 1.3-propanediol: o-pentadecalactone
over 24 h.

The polymers were characterized by gel permeation chroma-
tography, GPC (Viscotek TDA Model 300 ran by OmniSEC3
operating software precalibrated with polystyrene standards) and
1H-NMR spectroscopy (Bruker AVANCE 300 operated via
XWIN-NMR v3.5). 1H-NMR (�H CDCl3, 300 MHz) PGA-
co-PDL (1:1:0.5): 1.34 (s, 11H, H-g), 1.65 (m, 8H, H-e, e’, h),
2.32 (m, 6H, H-d, d’, i), 4.05 (q)-4.18 (m) (6H, H-a, b, c, f), 5.2
(s, H, H-j), PGA-co-PDL (1:1:1): 1.34 (s, 22H, H-g), 1.65 (m, 8H,
H-e, e’, h), 2.32 (m, 6H, H-d, d’, i), 4.05 (q)-4.18 (m) (6H, H-a, b,
c, f), 5.2 (s, H, H-j) and PGA-co-PDL (1:1:1.45) 1.30 (s, 32H,
H-g), 1.68 (m, 9H, H-e, e’, h), 2.32 (m, 6H, H-d, d’, i), 4.05
(q)-4.18 (m) (6H, H-a, b, c, f), 5.2 (s, H, H-j). Protons a to j are
illustrated in Figure 1.

Particle preparation

The multiple emulsion-solvent evaporation (w/o/w) technique was
employed for the encapsulation of a-CH and LS as reported
previously19. Briefly, a 1% (v/v) solution of protein (100 mg mL–

1) in phosphate buffered saline (PBS) pH 7.4 was added dropwise
to a homogenizing solution of polymer (30 mgmL-1) and aerosol
AOT (2 mM) in dichloromethane (15 ml) and emulsified using a
IKA yellowline DI 25 basic at 8000 rpm for 30–40 s. This first
emulsion was then gradually added to a mixing 1% (w/v) PVA
solution (135 ml). This w/o/w emulsion was left to mix with a
Silverson L4 RT mixer at 1000 rpm for 3 h to allow for
dichloromethane evaporation at 25 �C. The particles obtained
were collected by centrifugation (EBA 20, Hettich) at 6000 g for
6 min at room temperature. The supernatant was labeled ‘‘wash
1’’ and retained for further analysis. The microparticles were
re-suspended in 120 ml PBS buffer to remove the residual PVA
present on the surface of the particles and centrifuged as before.
The collected supernatants were labeled ‘‘wash 2’’. The
microparticles were then filtered, vacuum-dried overnight and
stored in the fridge. Three batches of each type of particle were
prepared.

Figure 1. Chemical structure of PGA-co-PDL (1:1:1).
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Particle characterization

The particles were visualized by scanning electron microscopy
(FEI – Inspect S Low VAC Scanning Electron Microscope). A
suspension of particles in water was deposited on 13 mm
aluminum stubs layered with a sticky conductive carbon tab and
air dried. An atomic layer of gold was deposited onto the particle
containing stubs using an EmiTech K 550X Gold Sputter Coater,
25 mA for 3 min.

Particle size and size distribution were determined by a laser
scattering device (Beckman Coulter LS 13 320, with aqueous
liquid module) according to the method described by Pamujula
et al.23 The Frauenhofer method was used to calculate the size
distribution of particles in water. The results obtained from
measurements of at least three batches of microparticles were
described by the volumetric mean diameter of the microparticles
(VMD) in micrometers. Equation (1) gives the formula for the
span of the volume distribution, which measures the width of the
size distribution relative to the median diameter (d[v,50]). A more
heterogeneous size distribution gives a large span value24.

Span ¼ d v, 90½ � � d v, 10½ �
d v, 50½ � ð1Þ

Powder X-ray diffraction (PXRD) patterns were collected by
using a Rigaku Miniflex X-ray diffractometer. Samples were
finely ground and packed into an aluminum sample holder.
Patterns were collected between 5� and 50� 2�, at increments of
0.02� 2�, scanning speed 2�min-1, voltage 30 KV, current 15 mA
using CuKa (1.54 Å) radiation.

Drug loading and encapsulation efficiency

The theoretical encapsulation efficiencies and enzyme loading
from three different batches of microparticles were calculated
from the measurement of the non-encapsulated protein fraction
present in the wash samples (Equation 2) and with the assumption
that no protein was lost during the preparation and processing of
the particles19. The enzyme loading (mg/mg) was determined
using (Equation 3).

Encapsulation Efficiency ð%Þ

¼ Protection not washed out ðmgÞ
Amount of protetin initially added ðmgÞ � 100

ð2Þ

EnzymeLoading

¼ Total amount of encapsulated enzyme ðmgÞ
Total amount of polymer ðmgÞ

ð3Þ

In vitro release of enzyme from microparticles

Sacrificial sampling was used to observe the release of the
enzyme from the particles. In a clean dry 1.5 ml microtube, 10 mg
of vacuum-dried particles and 1 ml of phosphate buffer saline pH
7.4 at 37 �C were placed under sink conditions. The microtubes
were then incubated at 37 �C in an orbital shaker (IKA KS 130) at
250 rpm. Samples were removed at increasing time points over
24 h and centrifuged (5 min at 13 500 rpm (17 000 g), accuSpin
Micro 17) to collect the particles. The supernatants were retained
for analysis by the protein assays described below.

The bioactivity of both enzymes was presented as the bioactive
fraction of the released enzyme. This was calculated from the
ratio of enzyme concentration determined from enzyme activity
and the total enzyme concentration as determined by UV
spectroscopy using the methods described below25.

Methods for assessing protein content and activity

The encapsulation washes (wash 1 and 2) and supernatants from
the release studies were analyzed for protein content19 and
activity using the following methods.

UV spectrophotometry

To determine the total protein content in a sample, the absorbance
was measured at 282 nm for both a-CH and LS, (UV/VIS
spectrophotometer Lambda 40, Perkin Elmer, run via the UV
WinLab version 2.80.03 software).

Azocasein assay

The proteolytic activity of a-CH following release from particles
was determined using a chromogenic-based technique as modified
by Gaskell et al.19 Briefly, 50 mL sample, standard or blank and
200mL of azocasein (10 mg/ml), prepared in 25 mM HEPES
buffer were incubated for 3 h at 37�C. The reaction was
terminated by addition of 750mL of 0.3 M trichloroacetic acid
to precipitate the undigested protein–chromogenic conjugate and
the samples were centrifuged for 5 min at 13 500 rpm (17 000 g)
(accuSpin Micro 17) to remove the precipitate. Blank samples
were prepared using deionized water to determine the amount
of azo-dye released nonenzymatically from the substrate.
Absorbance of the samples was recorded at 415 nm compared to
blank reagent samples using UV/VIS spectrophotometer Lambda
40, Perkin Elmer, using the UV WinLab version 2.80.03 software.
Three replicates of each sample were obtained and processed.

Muramidase assay

The muramidase activity of LS was determined using the method
described by Telkov et al.26 Supernatant (760 mL) was incubated
with 8mM 4-Methylumbelliferyl-b-D-N,N0,N00-triacetylchitotrio-
side in 50 mM citrate buffer, pH 6.0, in the presence of 5 mM
MgSO4 for 3 h at 37 �C. The fluorescence intensity was measured
using a fluorescence spectrophotometer (Varian Cary Eclipse,
operated via the Cary Eclipse Advanced Reads Application
version 1.1 (132) software) at an excitation wavelength of 350 nm
and an emission wavelength of 450 nm.

Statistical analysis

Statistical analysis was performed using student t-paired test.
The F-test was used to test the significance of variance. The
statistical significance level was set at p� 0.05.

Results and discussion

The aim of this research was to investigate if changes to the MW

and chemistry of PGA-co-PDL would alter the encapsulation,
release and bioactivity of a-CH and LS loaded into microparticles
fabricated by a w/o/w double emulsion solvent evaporation
technique.

Polymer synthesis and characterization

The lipase catalyzed ring opening polymerization of an equimolar
quantity of DVA, glycerol and o-pentadecalactone produced
PGA-co-PDL (1:1:1) of different MWs (11.2, 26.0 and 39.2 KDa)
by altering the time in contact with the lipase (6, 18 and 24 h,
respectively) (Figure 1). A maximum MW for this type of polymer
is usually obtained around 24 h synthesis followed by a subse-
quent decrease in MW as hydrolytic reactions dominate27.
This means that the range and difference in MWs achievable is
small and can be difficult to control. The incorporation of 1,3-
propandiol in place of the glycerol produced PPA-co-PDL (1:1:1,
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MW 22.0 KDa) which is more hydrophobic than PGA-co-PDL as
it does not have pendant hydroxyl groups.

A different set of polymers with a constant 1:1 ratio of DVA
and glycerol, but with either 0.5 or 1.5 equivalents of
o-pentadecalactone, was also prepared (1:1:0.5, MW 23.0 KDa
and 1:1:1.45, MW 34.0 KDa). These polymers should be more
(1:1:1.45) and less (1:1:0.5) hydrophobic than PGA-co-PDL
(1:1:1) depending on the relative number of hydroxyl groups. It is
difficult to control the MW of these polymers as an increase in the
amount of o-pentadecalactone increases the polymer MW

obtained. This means it can be difficult to directly compare the
effect of monomer ratio on polymer and particle properties as
there is also a difference in MW. 1H-NMR integration patterns
were used to confirm that the monomeric content in the polymers
were as expected and comparable to that reported in previous
work22. The difference in the number of protons at �1.34 is
indicative of the different proportions of pentadecalactone within
the polymer backbone (1:1:0.5 (11H), 1:1:1 (22H) and 1:1:1.45
(32H)).

Particle characterization

Protein-containing and blank particles containing no protein were
prepared from each of the different polymers. The mean median
of particle diameters (d50) of three separate batches of a-CH- or
LS-loaded microparticles and the span values are presented in
Table 1.

The particle sizes obtained ranged between 9 and 18 mm. The
particles prepared from PGA-co-PDL (1:1:0.5) were aggregated
so no size data was obtained for this polymer. There was no
significant difference observed between the sizes of most of the
a-CH- or LS-loaded particles for the different polymers used
except with PGA-co-PDL (1:1:1, 39.2 KDa) where significantly
larger LS-loaded particles were obtained (p50.05). Previously, it
was reported that the higher the MW or concentration of polymer
in the emulsion, the larger the diameter of the produced
particles28. It was not anticipated that any great differences in
particle size would be observed because the polymer MW range
studied was small, and the stirring speed, solution concentrations
and the organic phase volume were fixed which are the main
contributing factors affecting particle size20. Additionally, ana-
lysis of the span values (see Table 1) indicates that all
microparticles produced had a large size distribution which
made it difficult to draw any real trends from the data obtained.

The morphology of microparticles is very important as it
influences particle degradation and hence can affect the protein
release29. Moreover, particle morphology is dependent on the
nature, composition and MW of the polymer30,31 as well as the
particle formulation conditions20.

The SEM images of the external structure of a-CH loaded
PGA-co-PDL microparticles prepared from PGA-co-PDL (1:1:1)
of different MW are presented in Figure 2(A–C). Almost spherical
microparticles with a slightly irregular shape and a rough ridged
surface were observed. A high variability in microparticle size

was noted during the SEM analysis which supports the span value
data shown in Table 1. A similar morphology was also observed
with LS-loaded microparticles fabricated from the same polymers
(Figure 2G–I). Hence, changing either the polymer MW or the
type of protein encapsulated did not alter the particle morphology.

Altering the chemistry did, however, have an effect on particle
morphology. PGA-co-PDL (1:1:0.5) produced small, aggregated,
non-uniform particles (Figure 2D), and increasing the lactone
content within the polymer changed the particle morphology
slightly. With both a-CH- and LS-loaded PGA-co-PDL (1:1:1.45)
particles, some of the particles appeared irregular in shape with
rough surfaces, while the others were spherical with a slightly
smoother surface than those prepared from PGA-co-PDL (1:1:1)
(Figure 2E and J). These smooth particles were more similar to
those obtained from PPA-co-PDL (Figure 2F and K). A similar
morphology to a-CH-loaded microparticles was observed with
the LS-loaded microparticles (Figure 2H–K). Thompson et al.
reported similar morphological characteristics for particles
prepared from PGA-co-PDL and PPA-co-PDL22. Drug-free and
ibuprofen-loaded microspheres17 produced using PGA-co-PDL
were rough with a ridged morphology, whereas the equivalent
PPA-co-PDL microspheres were smooth.

Drug loading and encapsulation efficiency

Polymer MW, degree of hydrophilicity, polymer chemistry,
volume of organic phase and enzyme and polymer concentration
play an important role in determining the amount of enzyme
encapsulated. It was reported that increasing the MW of poly
("-caprolactone), PLA and PLGA increased the encapsulation
efficiency and the mean particle size due to the increased
viscosity of the organic phase, which reduces protein diffusion
into the external aqueous phase before polymer hardening8,32.
Partitioning of the drug from the internal to the external aqueous
phase limits the encapsulation efficiency and drug loading in
particles prepared via the emulsion solvent evaporation technique.
During particle formation, solvent removal and polymer precipi-
tation can alter the amount of the protein that partitions into the
external aqueous phase33. It was previously determined that 3 h
was the optimum time for PGA-co-PDL protein-containing
particle formation as this provided enough time for the solvent
to evaporate yet minimized enzyme diffusion to the aqueous
phase19.

The encapsulation efficiencies and enzyme loading from three
different batches of microparticles prepared using different
polymers are presented in Table 2.

Increasing the MW of PGA-co-PDL had no significant effect
on either the encapsulation efficiency or a-CH loading (p40.05).
However, a shift in PGA-co-PDL MW from 11.4 to 39.2 KDa
might not be large enough to induce a significant increase in the
viscosity of the organic phase, leading to a change in enzyme
loading. The degree of crystallinity of the polymer is another
important factor affecting drug encapsulation as drugs will tend
to be encapsulated in the amorphous region of the polymer34.

Table 1. The mean median of particle size and the span values for a-CH- and LS-loaded microparticles prepared via the w/
o/w double emulsion solvent evaporation technique. The results are the mean of three different prepared batches� S.D.

Mean median of particle size (mm) Span values

Polymer type CH LS CH LS

PGA-co-PDL (1:1:1, MW 11.4 KDa) 13.6� 1.4 9.3� 1.4 2.2� 0.2 2.1� 0.2
PGA-co-PDL (1:1:1, MW 26.0 KDa) 14.4� 2.9 12.2� 0.9 1.9� 0.2 2.3� 0.3
PGA-co-PDL (1:1:1, MW 39.2 KDa) 13.8� 2.9 17.5� 0.6 2.8� 1.2 3.3� 0.6
PGA-co-PDL (1:1:1.45, MW 34.0 KDa) 9.6� 0.81 15.1� 1.0 1.6� 0.3 2.1� 0.2
PPA-co-PDL (1:1:1, MW 22.0 KDa) 10.0� 1.2 14.4� 1.5 2.2� 0.5 2.6� 0.4
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Figure 2. 222Q2 .

Table 2. Encapsulation efficiencies (%) and enzyme loading (mg/mg particle) of a-Chymotrypsin (a-CH) and Lysozyme (LS) within polymeric
particles formulated over 3 h via the multiple emulsion solvent evaporation technique. The amount of a-CH or LS added into the aqueous phase was
150 mg. The results are the mean of three different prepared batches� S.D.

CH LS

Polymer type EE (%) Loading (mg/mg particle) EE (%) Loading (mg/mg particle)

PGA-co-PDL (1:1:1, MW 11.4 KDa) 14.83� 1.5 49.39� 4.9 32.05� 3.3 108.65� 11.5
PGA-co-PDL (1:1:1, MW 26.0 KDa) 12.52� 4.4 41.70� 0.01 32.62� 0.5 107.50� 2.1
PGA-co-PDL (1:1:1, MW 39.2 KDa) 19.40� 2.5 64.60� 8.4 30.11� 4.0 103.60� 10.8
PGA-co-PDL (1:1:0.5, MW 23.0 KDa) 20.41� 2.5 68.03� 6.4 25.84� 2.6 86.17� 10.6
PGA-co-PDL (1:1:1.45, MW 34.0 KDa) 23.94� 3.1 79.80� 7.6 **33.93� 1.1 **113.10� 5.8
PPA-co-PDL (1:1:1, MW 22.0 KDa) *38.58� 6.4 *128.50� 12.7 36.40� 2.84 121.33� 11.6

**Significant difference PGA-co-PDL (1:1:1.45, Mw 34.0 KDa) versus PGA-co-PDL (1:1:0.5, Mw 23.0 KDa), *significant difference PPA-co-PDL
(22.0 KDa) versus PGA-co-PDL (26.0 KDa) at p50.05.
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The PXRD patterns illustrated in Figure 3 indicate that both PGA-
co-PDL and PPA-co-PDL are semicrystalline copolymers. Both
PGA-co-PDL and PPA-co-PDL showed characteristic peaks at
21.5� and 24� 2�. PGA-co-PDL of different MWs have the same
XRD patterns, indicating they have the same level of crystallinity,
and this may explain the similar encapsulation efficiencies
observed. However, the PXRD pattern for PPA-co-PDL has a
flatter baseline between 0� and 20� 2�, indicating that it is a more
crystalline material. This difference in degree of crystallinity
between PGA-co-PDL and PPA-co-PDL may have influenced
microparticle formation but does not explain the increased
encapsulation efficiency observed with PPA-co-PDL.

Furthermore, changing the polymer composition by altering
the pentadecalactone monomeric ratio from 0.5 to 1.5 molar ratio
significantly (p50.05) increased the encapsulation efficiency of
LS-loaded microparticles. An increase was also observed with
a-CH-loaded particles, but this was not significant (p40.05).
Compared to PGA-co-PDL, utilizing the more hydrophobic
polymer (PPA-co-PDL) a significant (p50.05) increase in
encapsulation efficiency and a-CH loading (from 12.52� 4.42
to 38.58� 6.48% and 41.70� 0.01 to 128.50� 12.70, respect-
ively) was observed. The highest a-CH and LS encapsulation
efficiency and loading were obtained from the most hydrophobic
polymer, PPA-co-PDL. These results suggest that the more
hydrophobic polymers demonstrate better encapsulation effi-
ciency and drug loading of both enzymes compared to the less
hydrophobic variants.

Similarly, McGee et al. showed that ovalbumin-loaded
microparticles prepared with PLGA with higher lactide to
glycolide content (85:15) gave higher protein loading compared
to the more hydrophilic one with 50:50 lactide to glycolide
ratio35. Also, higher amounts of bovine albumin were encapsu-
lated using PLGA (75:25) compared to the more hydrophilic
PEGylated PLGA co-polymer36.

Comparing the encapsulation efficiencies and enzyme loading
for both enzymes, it was found that LS showed a higher
encapsulation and loading compared to a-CH with all the PGA-
co-PDL variants assessed (Table 2). LS is a smaller, positively
charged enzyme that has the ability to be adsorbed onto the
surface of polymers and this adsorption will affect its encapsu-
lation and release kinetics37. Furthermore, as previously
reported37,38, the temperature rises during the emulsification
steps and the adjustment of the pH to 7.4 can lead to favorable
conditions for LS adsorbing onto polymers. This could result in
increased amounts of LS being encapsulated within PGA-co-PDL.

Also, we cannot neglect that using 1% PVA as an emulsifier
imparts a negative charge to the surface of PGA-co-PDL and
PPA-co-PDL which would support enzyme binding. It was
reported that PVA, which is physically entrapped within the
surface layer of the polymer, imparts a negative surface charge on
the microparticles produced39,40. However, comparable amounts
of 128.5� 12.7 and 121.33� 11.6 mg/mg particle of a-CH and LS
were encapsulated, using PPA-co-PDL. This represents a signifi-
cant increase over PGA-co-PDL for a-CH- but not LS-loaded
particles.

In vitro release

It was anticipated that polymer MW and polymer backbone
chemistry would be important factors affecting the drug release21.
Varying the MW, varies the degradation rate of the polymer and
release kinetics of the drug can be controlled accordingly41.
Additionally, the hydrophobicity of the polymer can affect the
drug release by reducing the rate of water penetration into the
microspheres and drug egress to some extent compared to the less
hydrophobic polymers42. Furthermore, different particle morphol-
ogies may affect the protein release profile through its effect on
the microspheres porosity and the distribution of the drug within
the matrix29,43.

The release profiles of either a-CH or LS under sink conditions
from different batches are shown in Figures 4 and 5. Figure 4
shows the release of a-CH from microparticles prepared using
different polymers over 24 h into PBS buffered saline. Most of the
a-CH-loaded microparticle formulations showed a biphasic
release pattern with an initial high burst release phase followed
by a continuous release phase for the first 5 h which became
constant till the end of the release study. The extent of the burst
release varied between different microparticle formulations,
depending on the polymer used, and a notable difference was
observed between PGA-co-PDL (1:1:1 26.0 KDa or 11 KDa) and
the other polymers.

Other research groups11,33 have observed that increasing
polymer MW led to a decrease in the total amount of enzyme
released. In this study, there was no general trend observed
between increasing MW and decreasing enzyme release, which
may be because the differences in MW were small, but there was
significantly less release after 24 h with PGA-co-PDL (39 KDa)
particles compared to PGA-co-PDL (26 KDa or 11 KDa) par-
ticles. Varying the proportion of PDL within the polymer from 0.5
to 1.5 mole equivalents did not have any consistent effect on the

Figure 3. X-ray diffractionQ3 pattern of
a-Chymotrypsin-loaded particles formulated
from A, PPA-co-PDL (22.0 KDa); B, PGA-
co-PDL (11.4 KDa); C, PGA-co-PDL
(26.0 KDa); and D, PGA-co-PDL (1:1:1.5,
Mw 34.0 KDa).
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a-CH release from microparticles. The biggest difference in
release was found when comparing PGA-co-PDL (26 KDa) with
the more hydrophobic polymer of a comparable MW, PPA-co-PDL
(22 KDa). Compared to PPA-co-PDL, PGA-co-PDL showed a
significantly (p50.05) higher burst release of a-CH
(20.13� 3.0% compared to 8.54� 2.7%) and a greater amount
of release after 24 h in PBS buffer (45.28� 2.7% compared to
15.84� 4.5%). Furthermore, PPA-co-PDL demonstrated the
lowest burst and total release of a-CH of all the prepared
microparticles.

The initial burst release phase of a-CH from these micro-
particles could be due to the rapid release of protein near to the
surface of microparticles which accumulates at the water/oil
interface during the solvent evaporation process. The release of
the protein entrapped within the polymeric matrix causes a
continuous release of a-CH during the first 5 h. Furthermore, the
constant release phase could be attributed to the protein aggre-
gation and degradation that occurs during the release process.
Despite the higher encapsulation efficiency gained from PPA-
co-PDL, these particles demonstrated a slower burst and
continuous release rate compared with PGA-co-PDL with com-
parable Mw. This might be due to the higher hydrophobicity

and slower rate of degradation of this polymer (unpublished data).
The lower surface area available for contact with the dissol-
ution medium and the large particle size could be other
contributing factors toward this slow release as denser micro-
particles with smooth surfaces will usually produce a lower rate of
initial release compared with rough, porous microparticles. This is
in agreement with Thompson et al. who observed a similar effect
for ibuprofen release from PGA-co-PDL and PPA-co-PDL
microparticles17.

The release profiles of LS from the different polymeric
microparticles are shown in Figure 5. In this case, the LS-loaded
microparticle formulations showed a very small initial burst phase
followed by continuous release until the end of the release study
at 24 h. With LS there was a general trend of increasing PGA-
co-PDL (1:1:1) MW and decreasing enzyme release. The release
of LS from the 39 KDa polymer was significantly lower, and there
was less difference observed between the 26 KDa and 11 KDa
variants. Although, as with a-CH, there was a difference in the
release of LS from PPA-co-PDL (22 KDa) and PGA-co-PDL
(26 KDa) of a comparable MW, with LS the release profile of the
PPA-co-PDL particles was virtually the same as that of PGA-
co-PDL (39 KDa).

Figure 5. Release profiles of lysozyme from polymeric microparticles prepared via the multiple emulsion solvent evaporation technique. The results
are the mean of three different prepared batches at each time point� S.D.

Figure 4. Release profiles of a-Chymotrypsin from polymeric microparticles prepared via the multiple emulsion solvent evaporation technique.
The results are the mean of three different prepared batches at each time point� S.D.
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It was observed that the pattern of LS release was different
from that obtained with a-CH. a-CH release was characterized by
an initial burst followed by a slow continuous release phase for the
first 5 h then a plateau was reached. On the other hand, LS showed
a lower burst release followed by a higher continuous release
phase. This was especially evident with the lower MW PGA-co-
PDL. The lower burst release could be attributed to the more
efficient encapsulation of LS inside the microparticles with
minimum amounts remaining adsorbed on the surface. Stronger
binding of LS to these polymers could be another reason for this
as LS is cationic and these particles have a slightly anionic surface
from incomplete removal of PVA.

With all the microparticles studied, an incomplete release of
enzyme from these was observed even after 3 weeks. This has
been observed by many researchers, and it might be due to
degradation of the protein during the manufacturing of the
microparticles44. Formation of intermolecular linkages, hydroly-
sis of the protein molecule and the nonspecific adsorption
between polymer and protein either physically or chemically can
lead to protein degradation45.

Enzyme bioactivity

Retaining biological activity is crucial for the delivery of enzymes
and peptides, and preservation of the tertiary structure is required
to maintain activity. Enzyme activity before and after encapsu-
lation and upon release can be monitored to investigate the effect
of these processes on biological activity. Many researchers have
estimated the bioactivity of LS by measuring the rate of
degradation of Micrococcus luteus cells25,46. However, this
method is not always reproducible because of the dependence
on the ionic strength of the medium47,48. Different methods using
small synthetic substrates have been developed, investigated and
recommended for accurate determination of LS49–51.

Observation of the bioactive fraction of a-CH released from
microparticles prepared using PGA-co-PDL and PPA-co-PDL
(Figure 6) indicates that the maximum bioactivity was observed at
zero hours and ranged between 27% and 60%. This was followed
by a sharp decrease in activity during release into PBS buffer (pH
7.4). It was noticed that a-CH released from PGA-co-PDL
exhibited a maximum activity of between 40% and 60%, and PPA-
co-PDL showed the lowest activity of �27% at zero hour.
Furthermore, a gradual loss in bioactivity was recorded for all the
a-CH-loaded microparticles investigated. The reduction in

activity of a-CH could be attributed to conformational changes
in the a-CH active site during emulsification. The homogeniza-
tion and use of organic solvents are considered important steps in
causing protein deactivation and aggregation resulting in a low
bioactive fraction at zero hour52–54. The gradual loss in activity
during in vitro release was most likely due to autolysis and protein
fragmentation53. This finding is similar to what was already
reported by Gaskell et al. where they found that a-CH released
from PGA-co-PDL-loaded microparticles lost its bioactivity
gradually with an onset of loss due to proteolysis upon 2 h
release19.

At zero hour of release, LS retained almost 100% of its initial
bioactivity within all the particles investigated. Then, with time it
began to gradually lose its bioactivity (Figure 7). The higher MW

polymer, PGA-co-PDL (1:1:1, 39.0 KDa), and the more hydro-
phobic polymers, PGA-co-PDL (1:1:1.45) and PPA-co-PDL,
showed a significantly (p50.05) higher bioactive fraction, after
5 and 24 h release, compared to the other co-polymers. The
maximum LS bioactive fraction was found using PGA-co-PDL
(1:1:1.45, MW 34 KDa) and PGA-co-PDL (1:1:1, MW 39.2 KDa)
0.78� 0.08 and 0.42� 0.02, respectively, after incubation in
PBS for 24 h.

LS is a relatively stable enzyme55 which can better withstand
the harsh condition of the emulsification process and this was
confirmed by the retention of its bioactivity at zero time of release
(bioactive fraction ranged from 0.9 to 1.03 for all the investigated
polymers, Figure 7). Similarly, it was reported by Giteau and
coworkers that the LS released from PLGA microspheres was still
biologically active compared to a-CH, peroxidase and b-galacto-
sidase-loaded PLGA microspheres57

Q1. However, during in vitro
release there was a gradual decrease in the bioactive fraction
which could be attributed to the effect of PBS buffer on the
released LS. So, the nature of the release medium on the enzyme
activity is very important, as many proteins are not stable in buffer
media at 37 �C. However, for most studies the choice of release
medium is dictated by the in vivo target for delivery of the
enzyme. Jiang et al. investigated protein stability and protein–
polymer interactions in different release media and their effect on
protein release profiles from PLGA microspheres using LS as a
model protein37. They found that LS showed a higher stability at
pH 4.0 acetate buffer and pH 2.5 glycine buffer, whereas at pH 7.4
PBS, the stability was low and significant protein adsorption was
evident. Furthermore, the higher bioactive fraction of LS in PGA-
co-PDL (1:1:1, Mw, 39.2 KDa) and PGA-co-PDL (1:1:1.45) could

Figure 6. Bioactive fraction of released a-Chymotrypsin from (A) PGA-co-PDL (1:1:1, MW 11.4, 26.0 and 39.2 KDa) and (B) PGA-co-PDL (1:1:0.5,
MW 23.0 KDa, 1:1:1.5, MW 34.0 KDa) and PPA-co-PDL (1:1:1, MW 22.0 KDa) in PBS buffer, pH 7.4. Triplicate samples were used from two
different prepared batches at each time point� S.D.
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possibly be attributed to the higher solubility of these polymers in
DCM compared with PPA-co-PDL and the lower MW PGA-co-
PDL polymers. Additionally, the longer the contact time of the
enzyme in the organic phase, the more enzyme activity would be
lost. Thus, a higher solidification rate would be beneficial in
retaining the LS biological activity. Similar results were reported
by Ghaderi and Carlfors regarding stability of LS during
emulsification process within PLGA48. Future work will focus
on enhancing macromolecule encapsulation efficiency as well as
maintaining stability during the manufacturing process. For
example, the use of additives to protect the protein structure or
the application of alternative formulation methods such as spray
drying or s/o/w emulsions may substantially reduce the loss in
bioactivity during encapsulation.

Conclusion

This research has shown that altering the MW of PGA-co-PDL
from 11.2 to 39.2 KDa had little impact on particle morphology,
size, encapsulation efficiency or bioactivity of a-CH- and LS-
loaded microparticles. Altering the polymer chemistry had a
greater effect, as a higher encapsulation efficiency and drug
loading of both a-CH and LS were obtained with PPA-co-PDL
compared to PGA-co-PDL particles. A biphasic release pattern
was obtained with all microparticles studied, and the release
profiles varied according to the polymer used. A lower burst and
continuous release was obtained for both enzymes with the more
hydrophobic polymers, PPA-co-PDL and PGA-co-PDL (1:1:1.45)
and with the higher MW PGA-co-PDL (39.2 KDa). Furthermore, a
very low burst release was recorded with LS compared to a-CH
with all the investigated polymers.

One benefit of the low impact of small changes in MW or PDL
content on encapsulation and release is that batch-to-batch
variations in the polymers should not have a demonstrable
effect on either the properties of particles formed or the
encapsulation and release data obtained. These findings suggest
that more substantial changes to polymer properties are required
to significantly influence the encapsulation and release of
proteins. The nature of this type of polymerization reaction
means that it is difficult to achieve higher MW materials and
extend the range of MWs studied. Small changes to the polymer
chemistry has been shown to have a greater effect, hence future

studies will focus on further modifying the polymer chemistry
either by incorporating different monomers into the backbone or
via modification of the pendant hydroxyl groups.
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