24 research outputs found
Resonant Inelastic X-ray Scattering (RIXS) Studies in Chemistry : Present and Future
This chapter illustrates how resonant inelastic x-ray scattering (RIXS) is used to address questions in chemistry, with special focus on the electronic structure and catalytic activity of first row transition metals. RIXS is a two-photon process that is the x-ray equivalent of resonance Raman spectroscopy. The final states correspond to vibrational, valence electronic or even core excitations. In addition to the advantages of a local element-selective x-ray spectroscopic probe, RIXS gives new information compared to single-photon x-ray absorption and x-ray emission experiments. Metal L-edge RIXS shows intense metal-centered ligand- field transitions, even in cases where they are spin or parity forbidden in optical absorption spectroscopy. By selecting different resonances by appropriately tuning the incident energy, it is possible to isolate different ligand-field and charge-transfer transitions. The observation of a large number of electronic states that can be properly assigned, sometimes with the help of theoretical methods, gives novel opportunities to quantify metal-ligand interactions and their contributions to reactivity. RIXS in the K pre-edge can be used to obtain L- and M-edge like spectra including insight into charge-transfer excitations all with the advantages of a hard x-ray probe. Finally, it is shown how time-resolved RIXS down to the femtosecond timescale probes the orbitals of transient reaction intermediates. The usefulness of RIXS in chemistry is shown for a diverse set of systems, including coordination complexes, metal enzymes, and nanoparticles
Invasive Salix fragilis: altered metabolic patterns in Australian streams
Willows (Salix spp.) are listed as a weed of national significance in Australia. Despite this recognition, functional effects of willows on streams compared to native species are largely unknown. Leaves supply carbon to instream food webs, but may also act as surfaces for biofilm, and thus can contribute in different ways to stream metabolism. Salix fragilis L. and Eucalyptus camaldulensis Dehnh. leaves that had been colonised by biofilms were placed into chambers in laboratory conditions, and metabolic rates were measured. Gross Primary Production (GPP) of biofilms on E. camaldulensis leaves after 10 days of incubation were significantly greater than biofilms on S. fragilis leaves. S. fragilis leaves displayed greater rates of microbial decomposition per leaf mass. Autotrophic biomass was one hundred fold greater on E. camaldulensis leaves. The biofilm on E. camaldulensis leaves is likely to support a greater population of grazers, compared to S. fragilis. The alien S. fragilis leaves, therefore, are fuelling a different component of the food web to endemic E. camaldulensis leaves. Endemic Eucalyptus spp. leaves play an important role in temperate Australian streams as a substrate for autotrophic growth and provide a year round pathway for carbon to reach secondary invertebrate consumer