1,431 research outputs found

    Pricing and hedging of Asian options: Quasi-explicit solutions via Malliavin calculus

    Get PDF
    We use Malliavin calculus and the Clark-Ocone formula to derive the hedging strategy of an arithmetic Asian Call option in general terms. Furthermore we derive an expression for the density of the integral over time of a geometric Brownian motion, which allows us to express hedging strategy and price of the Asian option as an analytic expression. Numerical computations which are based on this expression are provided

    HL-1 cells express an inwardly rectifying K+ current activated via muscarinic receptors comparable to that in mouse atrial myocytes

    Get PDF
    An inwardly rectifying K^+ current is present in atrial cardiac myocytes that is activated by acetylcholine (I_{KACh}). Physiologically, activation of the current in the SA node is important in slowing the heart rate with increased parasympathetic tone. It is a paradigm for the direct regulation of signaling effectors by the GÎČÎł G-protein subunit. Many questions have been addressed in heterologous expression systems with less focus on the behaviour in native myocytes partly because of the technical difficulties in undertaking comparable studies in native cells. In this study, we characterise a potassium current in the atrial-derived cell line HL-1. Using an electrophysiological approach, we compare the characteristics of the potassium current with those in native atrial cells and in a HEK cell line expressing the cloned Kir3.1/3.4 channel. The potassium current recorded in HL-1 is inwardly rectifying and activated by the muscarinic agonist carbachol. Carbachol-activated currents were inhibited by pertussis toxin and tertiapin-Q. The basal current was time-dependently increased when GTP was substituted in the patch-clamp pipette by the non-hydrolysable analogue GTPÎłS. We compared the kinetics of current modulation in HL-1 with those of freshly isolated atrial mouse cardiomyocytes. The current activation and deactivation kinetics in HL-1 cells are comparable to those measured in atrial cardiomyocytes. Using immunofluorescence, we found GIRK4 at the membrane in HL-1 cells. Real-time RT-PCR confirms the presence of mRNA for the main G-protein subunits, as well as for M2 muscarinic and A1 adenosine receptors. The data suggest HL-1 cells are a good model to study IKAch

    Demonstration of tunability of HOFI waveguides via start-to-end simulations

    Get PDF
    In recent years, hydrodynamic optical-field-ionized (HOFI) channels have emerged as a promising technique to create laser waveguides suitable for guiding tightly focused laser pulses in a plasma, as needed for laser-plasma accelerators. While experimental advances in HOFI channels continue to be made, the underlying mechanisms and the roles of the main parameters remain largely unexplored. In this paper, we propose a start-to-end simulation pipeline of the HOFI channel formation and the resulting laser guiding and use it to explore the underlying physics and the tunability of HOFI channels. This approach is benchmarked against experimental measurements. HOFI channels are shown to feature excellent guiding properties over a wide range of parameters, making them a promising and tunable waveguide option for laser-plasma accelerators

    Circuit dissection of the role of somatostatin in itch and pain

    Get PDF
    Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide

    Selection at a single locus leads to widespread expansion of toxoplasma gondii lineages that are virulent in mice

    Get PDF
    The determinants of virulence are rarely defined for eukaryotic parasites such as T. gondii, a widespread parasite of mammals that also infects humans, sometimes with serious consequences. Recent laboratory studies have established that variation in a single secreted protein, a serine/threonine kinase known as ROPO18, controls whether or not mice survive infection. Here, we establish the extent and nature of variation in ROP18among a collection of parasite strains from geographically diverse regions. Compared to other genes, ROP18 showed extremely high levels of diversification and changes in expression level, which correlated with severity of infection in mice. Comparison with an out-group demonstrated that changes in the upstream region that regulates expression of ROP18 led to an historical increase in the expression and exposed the protein to diversifying selective pressure. Surprisingly, only three atypically distinct protein variants exist despite marked genetic divergence elsewhere in the genome. These three forms of ROP18 are likely adaptations for different niches in nature, and they confer markedly different virulence to mice. The widespread distribution of a single mouse-virulent allele among geographically and genetically disparate parasites may have consequences for transmission and disease in other hosts, including humans

    SAMQA: error classification and validation of high-throughput sequenced read data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advances in high-throughput sequencing technologies and growth in data sizes has highlighted the need for scalable tools to perform quality assurance testing. These tests are necessary to ensure that data is of a minimum necessary standard for use in downstream analysis. In this paper we present the SAMQA tool to rapidly and robustly identify errors in population-scale sequence data.</p> <p>Results</p> <p>SAMQA has been used on samples from three separate sets of cancer genome data from The Cancer Genome Atlas (TCGA) project. Using technical standards provided by the SAM specification and biological standards defined by researchers, we have classified errors in these sequence data sets relative to individual reads within a sample. Due to an observed linearithmic speedup through the use of a high-performance computing (HPC) framework for the majority of tasks, poor quality data was identified prior to secondary analysis in significantly less time on the HPC framework than the same data run using alternative parallelization strategies on a single server.</p> <p>Conclusions</p> <p>The SAMQA toolset validates a minimum set of data quality standards across whole-genome and exome sequences. It is tuned to run on a high-performance computational framework, enabling QA across hundreds gigabytes of samples regardless of coverage or sample type.</p

    Relationship Between Non-Hodgkin's Lymphoma and Blood Levels of Epstein-Barr Virus in Children in North-Western Tanzania: A Case Control Study.

    Get PDF
    Non-Hodgkin's Lymphomas (NHL) are common in African children, with endemic Burkitt's lymphoma (BL) being the most common subtype. While the role of Epstein-Barr Virus (EBV) in endemic BL is known, no data are available about clinical presentations of NHL subtypes and their relationship to Human Immunodeficiency Virus (HIV) infection and Epstein Barr Virus (EBV) load in peripheral blood of children in north-western, Tanzania. A matched case control study of NHL subtypes was performed in children under 15 years of age and their respective controls admitted to Bugando Medical Centre, Sengerema and Shirati district designated hospitals in north-western, Tanzania, between September 2010 and April 2011. Peripheral blood samples were collected on Whatman 903 filter papers and EBV DNA levels were estimated by multiplex real-time PCR. Clinical and laboratory data were collected using a structured data collection tool and analysed using chi-square, Fisher and Wilcoxon rank sum tests where appropriate. The association between NHL and detection of EBV in peripheral blood was assessed using conditional logistic regression model and presented as odds ratios (OR) and 95% confidence intervals (CI). A total of 35 NHL cases and 70 controls matched for age and sex were enrolled. Of NHLs, 32 had BL with equal distribution between jaw and abdominal tumour, 2 had large B cell lymphoma (DLBCL) and 1 had NHL-not otherwise specified (NHL-NOS). Central nervous system (CNS) presentation occurred only in 1 BL patient; 19 NHLs had stage I and II of disease. Only 1 NHL was found to be HIV-seropositive. Twenty-one of 35 (60%) NHL and 21 of 70 (30%) controls had detectable EBV in peripheral blood (OR = 4.77, 95% CI 1.71 - 13.33, p = 0.003). In addition, levels of EBV in blood were significantly higher in NHL cases than in controls (p = 0.024). BL is the most common childhood NHL subtype in north-western Tanzania. NHLs are not associated with HIV infection, but are strongly associated with EBV load in peripheral blood. The findings suggest that high levels of EBV in blood might have diagnostic and prognostic relevance in African children

    Dynamic displacement of normal and detached semicircular canal cupula

    Get PDF
    © 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in JARO - Journal of the Association for Research in Otolaryngology 10 (2009): 497-509, doi:10.1007/s10162-009-0174-y.The dynamic displacement of the semicircular canal cupula and modulation of afferent nerve discharge were measured simultaneously in response to physiological stimuli in vivo. The adaptation time constant(s) of normal cupulae in response to step stimuli averaged 36 s, corresponding to a mechanical lower corner frequency for sinusoidal stimuli of 0.0044 Hz. For stimuli equivalent to 40–200 deg/s of angular head velocity, the displacement gain of the central region of the cupula averaged 53 nm per deg/s. Afferents adapted more rapidly than the cupula, demonstrating the presence of a relaxation process that contributes significantly to the neural representation of angular head motions by the discharge patterns of canal afferent neurons. We also investigated changes in time constants of the cupula and afferents following detachment of the cupula at its apex—mechanical detachment that occurs in response to excessive transcupular endolymph pressure. Detached cupulae exhibited sharply reduced adaptation time constants (300 ms–3 s, n = 3) and can be explained by endolymph flowing rapidly over the apex of the cupula. Partially detached cupulae reattached and normal afferent discharge patterns were recovered 5–7 h following detachment. This regeneration process may have relevance to the recovery of semicircular canal function following head trauma.Financial support was provided by the NIDCD R01 DC06685 (Rabbitt) and NASA GSRP 56000135 & NSF IGERT DGE- 9987616 (Breneman)

    Superhydrophilic Functionalization of Microfiltration Ceramic Membranes Enables Separation of Hydrocarbons from Frac and Produced Water

    Get PDF
    The environmental impact of shale oil and gas production by hydraulic fracturing (fracking) is of increasing concern. The biggest potential source of environmental contamination is flowback and produced water, which is highly contaminated with hydrocarbons, bacteria and particulates, meaning that traditional membranes are readily fouled. We show the chemical functionalisation of alumina ceramic microfiltration membranes (0.22 ÎŒm pore size) with cysteic acid creates a superhydrophilic surface, allowing for separation of hydrocarbons from frac and produced waters without fouling. The single pass rejection coefficients was >90% for all samples. The separation of hydrocarbons from water when the former have hydrodynamic diameters smaller than the pore size of the membrane is due to the zwitter ionically charged superhydrophilic pore surface. Membrane fouling is essentially eliminated, while a specific flux is obtained at a lower pressure (<2 bar) than that required achieving the same flux for the untreated membrane (4–8 bar)

    Computational exploration of molecular receptive fields in the olfactory bulb reveals a glomerulus-centric chemical map

    Get PDF
    © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Progress in olfactory research is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli in the dorsal olfactory bulb (dOB) innervated by the MOR18-2 olfactory receptor, also known as Olfr78, with human ortholog OR51E2. Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We found that a combination of conventional physico-chemical and vibrational molecular descriptors performed best in predicting glomerular responses using nonlinear Support-Vector Regression. We also discovered several previously unknown odorants activating MOR18-2 glomeruli, and obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Our results confirm earlier findings that demonstrated tunotopy, that is, glomeruli with similar tuning curves tend to be located in spatial proximity in the dOB. In addition, our results indicate chemotopy, that is, a preference for glomeruli with similar physico-chemical MRR descriptions being located in spatial proximity. Together, these findings suggest the existence of a partial chemical map underlying glomerular arrangement in the dOB. Our methodology that combines machine learning and physiological measurements lights the way towards future high-throughput studies to deorphanise and characterise structure-activity relationships in olfaction.Peer reviewe
    • 

    corecore