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1 Introduction

Asian options are options where the payoff depends on the average of the under-

lying asset during at least some part of the life time of the option. The average

can be taken in several ways, each leading to a different type of Asian option.

According to Nelken [16] the name Asian option was coined by employees of

Bankers Trust, which sold this type of options to Japanese firms who wanted to

hedge their foreign currency exposure. These firms used Asian options because

their annual reports were also based on average exchange rates over the year.

Average type options are particularly suited to hedge risk at foreign exchange

markets and are significantly cheaper than plain vanilla options by reason of

the averaging effect. Effectively such options are traded since the mid 1980’s

and first appeared in the form of commodity linked bonds. Specific examples

are the Mexican Petro Bond and the Delaware Gold Index Bond. Asian options

are mostly OTC traded, however market and trading volume appear to grow

very rapidly. A recent study of CIBC world markets revealed that Asian style

options are the most commonly traded exotic options. Similar statements can

be found in Nelken [16].

In the Black-Scholes model, the technically easiest case to consider is where

the average is a geometric average. Since the product of log-normal distributed

random variables is again log-normal distributed, explicit analytical expressions

are available for the price of such options as well as their hedging strategies. We

therefore focus on the case of arithmetic Asian options. In particular, we study

the case of a continuous arithmetic average price call

(
1

T

∫ T

0

S(t) dt−K

)+

,

which is arguable the most important and most popular case. We note, however,

that all results can be adapted to cover other cases of Asian options.

Of fundamental importance is the question how these options should be

priced. In a standard Black-Scholes framework the unique arbitrage free price
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is given by the discounted expectation of the payoff under the unique risk-neutral

measure. Alternatively a PDE similar to the classical Black-Scholes equation

can be found. In contrast to the classical case of a European call, however, it

is far more difficult to derive practically useful expressions for the discounted

expectation or the solution of the corresponding partial differential equations.

In fact, Rogers and Shi [18] pointed out that the existence of a closed form

solution to its valuation would be impossible. Consequently, it would also be

impossible that a closed form solution for a hedging strategy exists.

However, it is slightly subjective as to what is considered to be a closed

form and what not in Mathematical Finance. An analytic formula involving a

triple integral and a complicated density expression might be closed form for

one but not closed form for another. From a practitioner’s point of view, closed

form is considered to be something that can easily be implemented and leads

to numerically highly accurate results, such as the Black-Scholes formula for

example. For this reason, the more complicated looking closed form solutions

are often termed quasi-explicit solutions. Geman and Yor (see [7] and [8]) were

among the first to derive integral representations for the price of Asian options.

More precisely, they derive an explicit expression for the Laplace transform of

the price of an Asian option with respect to the duration time T , see also Carr

and Schröder [4] for an excellent exposition on this subject. It is not possi-

ble to analytically invert this Laplace transformation, but powerful numerical

schemes have been developed, see for example Fu et al. [6]. On the other hand,

further numerical procedures addressing either Monte Carlo simulation or var-

ious approximations of Asian options have been studied by Kemna and Vorst

[12], Turnbull and Wakeman [20], Rogers and Shi [18], and Simon, Goovaerts,

and Dhaene [19] to mention only a few. For a more comprehensive literature

review we refer to the excellent survey article of Boyle and Potapchik [2].

With the exception of Boyle and Potapchik1 all of the authors above address

1Boyle and Potapchik [2] provide a number of Monte Carlo estimators for the Greeks of
an Asian option.
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exclusively the pricing aspect, but not the hedging aspect. In fact, the aspect of

hedging an Asian option does not seem to be very well studied in the literature.

To our knowledge, the only references dealing with the hedging strategy of Asian

options are Albrecher et al. [1] and Jacques [15].

Albrecher et al. [1] consider an incomplete market model (by considering

Lévy processes); thus they cannot get a hedging strategy but only a static su-

perhedging strategy for the payoff structure of the Asian option. They do so by

using that the price of a (discretely sampled) Asian option can be approximated

from above by a (static) portfolio of European call options with strike prices κi

satisfying κ1+ ...+κn = nK, where K is the strike price of the Asian option and

n is the number of samples in the average. The approximation is very good if

the Asian option is deep in–the–money but features a large relative error within

the magnitude of 50% and more if the Asian option is out–of–the–money23.

Jacques [15] on the other side considers a discrete arithmetic Asian option on

an underlying risky asset where the price dynamics is modeled as a geometric

Brownian motion. He uses the Edgeworth expansion introduced by Turnbull

and Wakeman [20] (originally to price Asian options) in order to approximate

2see Albrecher et al. [1], Exhibit 3 on page 70, last two rows display relative errors of more
than 50%.

3Intuitively, as Albrecher et al.’s hedge is static, it features low transaction costs. However,
in the case of weekly averaging over a one year period, the hedging agent needs to purchase
52 European call options, leading to similar transaction costs as a dynamic hedge in one
underlying, which is updated weekly. Additionally, looking at Exhibit 2 in Albrecher et al. [1]
(see page 68, last collumn) reveals that the strike prices κi for the Europan calls used in the
static hedge are all very close to each other. Specifically for the at the money case one has
κi ∈ [99.79, 100.13] for all i = 1, ..., n. Under the realistic assumption that not all strikes are
liquid, and e.g. options with strike 95, 100, 105, 110 are traded, the static hedge proposed by
Albrecher et al. would practically consist of holding one European call option only, that is the
one with strike 100, i.e. κi = 100 for all i = 1, ..., n. In that case the hedging results obtained
by Albrecher et al. are worse, ranging from 5% relative error for the in–the–money Asian
options to far off (1.7243 instead of actual 0.2342) for the out–of–the–money case (compare
Albrecher et al. [1], Exhibit 7, last collumn EC, page 71). On the other side, whether liquid
or not, in the Black-Scholes context, the European call options required in Albrecher et al.
(at all strikes) can be created artificially using Black-Scholes EC delta hedges (which can be
computed explicitly), and a weighted average of these can be used to superhedge the Asian
option. The hedge however is then no longer static, but in this form compares well to ours.
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the delta and hence the hedging strategy, dynamically updating the fit of the

approximating distribution (log-normal and inverse Gaussian). Jacques then

studies the performance of the hedging strategy when hedging the approximated

option price rather than the actual option price.4 By comparison, we study a

continuous arithmetic Asian option on an underlying risky asset where the price

dynamics is modeled as a geometric Brownian motion. Hence, it is possible to

compare the approach of Jacques with our approach.

Both approaches, that is Albrecher et al. [1] and Jacques [15], are biased,

while ours is not. Our approach is stable, whether the option is in–the–money,

at–the–money or out–of–the–money, whether long or short times to maturities,

high or low volatilities are present. It is also straightforward to obtain numerical

results. Albrecher et al.’s and Jacques’s hedging strategy have their own justi-

fication and appeal. In practice all three of them could be used with different

weights, or using one to control for the other.

For any option, the hedging problem is usually more complex than the pric-

ing problem. In fact, a solution of the hedging problem determines an arbitrage

free price via the initial value of the hedging strategy. In this paper, we derive

an analytic formula, i.e. a quasi-explicit formula, for the hedging strategy of

an arithmetic Asian call option, by using standard techniques from Malliavin

calculus and in particular the Clark–Ocone formula. As a byproduct of the

hedging strategy we obtain a quasi-explicit expression for the price of an Asian

option as indicated above. Note that our derivation via the hedging strategy

using Malliavin calculus is conceptually quite different from other approaches

– even though our pricing formula is not significantly less complex than those

derived by other authors. On the other hand, knowing the actual hedging strat-

egy is of fundamental importance for sellers and buyers of Asian options. In

order to demonstrate that our formula is indeed applicable, we include various

numerical examples at the end. Finally, we compare our hedging strategy with

4Compare Jacques [15], row 1 in Table 1, page 169, Table 3 and Jacques’s statement that
the error is in relation to the option price 12.68 (4 lines up from the table).
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the approach of Jacques [15].

The remainder of this article is structured as follows. In section 2, we set

up our model and outline the problem, while in section 3, we provide a brief

review of some techniques of Malliavin Calculus. In section 4, we derive an

expression for the density function of the time integral of geometric Brownian

motion as well as a differential equation which characterizes it. In section 5,

we derive our main results, while section 6 gives our numerical examples. The

main conclusions are summarized in section 7.

2 Model Setup

We consider the standard Black-Scholes framework, i.e. a model consisting of a

risk-free bond B(·) and a risky stock S(·) with dynamics

dB(t) = B(t)r dt (1)

dS(t) = S(t) [r dt+ σ dW (t)] , (2)

whereW (·) denotes a standard one-dimensional Brownian motion on a probabil-

ity space (Ω,F , P ), with (F(t))t∈[0,T ] being the canonical Brownian filtration.

Here, we assume without loss of generality that the measure P is in fact the

risk-neutral measure. It is well known that the dynamics (2) provides

S(t) = s · exp
(
rt− σ2

2
t+ σW (t)

)
, 0 ≤ t ≤ T (3)

with S(0) = s. Let us denote the investor’s wealth and the amount invested

in the stock at time t by V (t) and π(t), respectively. The amount invested in

the bond is given by V (t) − π(t). We call π(·) an investment strategy. As the

wealth process clearly depends on the investment strategy we write V π(·) in

the following. We assume that the investor follows a self-financing investment

strategy with initial wealth V (0) = v0. Assuming this, the wealth process
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satisfies

dV π (t) = rV π (t) dt+ π(t)σ dW (t), 0 ≤ t ≤ T. (4)

Due to the stochastic integral on the one hand and to exclude arbitrage on

the other hand we must impose the following two conditions on the investment

strategy for technical reasons:

∫ T

0

π2(t) dt < ∞ P− a.s. (5)

P ({V π (t) > 0 ∀t ≥ 0}) = 1. (6)

In particular, the first condition ensures that the SDE in (4) has a unique strong

solution, given by

V π (t) · exp (−rt) = v0 +

∫ t

0

exp (−ru) π(u)σ dW (u), for 0 ≤ t ≤ T, (7)

see for example Korn [13], pages 54–55. Now consider the payoff at maturity of

the arithmetic Asian option

fT =

[
1

T

∫ T

0

S(t) dt−K

]+
(8)

with K > 0 being the strike. A hedging strategy of this option is a self-financing

strategy π(·) such that

V π(T ) = fT

holds P-a.s.. It follows from Theorem 1.2.1 in Karatzas [9] that there exists a

unique hedging strategy and, moreover, the initial investment that needs to be

undertaken to finance this hedge is given by

v0 = E [fT · exp (−rT )] . (9)
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The value v0 is then the only price of the option at time t = 0, which does not

allow for arbitrage, and is therefore called the fair price of the option fT at time

0. In the remainder of this article we determine a quasi-explicit formula for

the hedging strategy π(·) and the fair price of an arithmetic Asian call option,

denoted by either V π(t) or simply V (t) with V π(0) = v0.

3 A brief review on Malliavin calculus

Let us review some of the basic concepts of Malliavin calculus. A standard

reference for this is e.g. Nualart [17]. We consider the set S of cylindrical

functionals F : Ω → R, given by F = f (W (t1), ...,W (tl)) where f ∈ C∞
b

(
R

l
)
is

a smooth function with bounded derivatives of all orders and (W (t)) denotes a

Brownian motion on Ω.5 We define the Malliavin derivative operator on S via

DsF :=
l∑

i=1

∂f

∂xi

(W (t1, ω), ...,W (tl, ω)) · 1[0,ti](s).

This operator and the iterated operators Dn are closable and unbounded from

Lp (Ω) into Lp (Ω× [0, T ]n), for all n ≥ 1. Their respective domains are denoted

by D
n,p and obtained as the closure of S with respect to the norms defined

by ‖F‖pn,p = ‖F‖pLp(Ω) +
∑n

k=1

∥∥DkF
∥∥p
Lp(Ω×[0,T ]k). In the following we concen-

trate on the Hilbert space D
1,2, which will be the relevant space for all of our

computations. We need the following version of the chain rule for Malliavin

calculus:

Proposition 1. Let ϕ ∈ C1(R) be a continuously differentiable function and

let F ∈ D
1,2. Then ϕ(F ) ∈ D

1,2 if and only if ϕ(F ) ∈ L2(Ω) and ϕ′(F )DF ∈
L2(Ω× [0, T ]) and under these hypotheses

D [ϕ(F )] = ϕ′(F )DF. (10)

5Within the context of this article, we can assume w.l.o.g. that Ω = C0([0, T ]) is the space
of continuous functions ω : [0, T ] → R satisfying ω(0) = 0.
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If ϕ is not C1 but globally Lipschitz with constant K, then ϕ(F ) is still in D
1,2

and there exist a random variable G, which is bounded by K, such that

D [ϕ(F )] = GDF. (11)

Proof. This is a combination of Lemma 2.1. in Leon et al. [14] and Proposition

1.2.3 in Nualart [17].

The following proposition presents the Clark-Ocone formula which is the

main link between hedging and Malliavin calculus. It is identical to Proposition

1.3.5 in Nualart [17].

Proposition 2. Let F ∈ D
1,2, then

F = E [F ] +

∫ T

0

E [DtF | F(t)] dW (t). (12)

For our application we will later need to compute the Malliavin derivative

of the payoff of an arithmetic average Asian option. The following proposition

will help us with that.

Proposition 3. Define gT = 1
T

∫ T

0
S(u) du − K with S (·) given by (3) and

K ∈ R. Then gT ∈ D
1,2 and

Dt(gT ) = σgT + σK − σ

T

∫ t

0

S(u) du. (13)

Proof. It follows from Fournie et al. [5], Property P2 by choosing X1(t) = S(t)

and X2(t) =
∫ t

0
S(u) du and identifying the first variation process Y (·) of this

system as

Y (t) =

(
S(t)
S(0)

0
∫ t

0
S(u)
S(0)

du 1

)

after performing elementary linear algebra operations that, for all t ∈ [0, T ], one

9



has S(t) ∈ D
1,2 and

∫ t

0
S(u) du ∈ D

1,2 with

DsS(t) = σS(t) · 1[s≤t]

Ds

(∫ t

0

S(u) du

)
=

(∫ t

s

σS(u) du

)
1[s≤t].

As the Malliavin derivative is additive and zero on constants, we have that

DtgT = Dt

(
1

T

∫ T

0

S(u) du−K

)

=
1

T

∫ T

t

σS(u) du

= σgT − σ

T

∫ t

0

S(u) du+ σK.

4 On the density of the arithmetic Asian aver-

age

In this section, we study the density function of the arithmetic average of ge-

ometric Brownian motions. We present a rather direct approach resulting in a

quasi-explicit formula. In addition to this we derive a PDE for the distribution

function. The motivation for this is as follows. As indicated in the introduc-

tion, (quasi)-explicit is a relative term, and even though we obtain an integral

representation, numerical integration needs to be carried out to compute the

expression. This is the same for the formulas derived by Yor et al. [7]. On the

other side, powerful methods for the solution of partial differential equations

are available, and deriving the density function from this might at least be a

good alternative. Yet another alternative is to use a Monte Carlo approach.

Proposition 4. For t > 0, denote by p(t, x, a, b) the probability density of
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∫ t

0
exp (au+ bW (u)) du. Then p(t, x, a, b) = 0 for x ≤ 0, and

p(t, x, a, b) = Γt(x)

∫ ∞

0

Ψt(v)

[∫ ∞

0

y
2a
b2 exp

(
− 2

b2x

[
y2 + 2y cosh(v) + 1

])
dy

]
dv

for x > 0, where

Γt(x) = 8
(
πb3x2

√
2πt
)−1

exp

(
4π2 − (at)2

2b2t

)
and

Ψt(v) = sin

(
4πv

b2t

)
· sinh(v) · exp

(
−2v2

b2t

)
.

Proof. Denote by Ut(x; a, b) the probability distribution function

Ut(x; a, b) = P

(∫ t

0

exp (au+ bW (u)) du ≥ x

)
.

According to Lemma 9.4 in Karatzas et al. [10], one has

Ut(x; a, b) = P

(∫ b2t
4

0

exp

(
2

(
2au

b2
+W (u)

))
du ≥ b2x

4

)
.

Obviously,

Ut(x; a, b) =

∫

Ω

1A dP,

where

A =

{
ω

∣∣∣∣∣

∫ b2t
4

0

exp

(
2

(
2au

b2
+W (u)

))
du ≥ b2x

4

}
.

Define an equivalent measure P̃ such that

dP̃

dP

∣∣∣∣∣
Fs

= exp

(
−2a2

b4
s− 2a

b2
W (s)

)
. (14)

Girsanov’s theorem shows that (W̃ (t)) defined by W̃ (t) = W (t)+ 2at
b2

is a Brow-
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nian motion under P̃. Since

A =

{
ω

∣∣∣∣∣

∫ b2t
4

0

exp
(
2W̃u

)
du ≥ b2x

4

}
,

setting s = b2t/4 in equation (14) gives

Ut(x; a, b) =

∫

Ω

1A

dP

dP̃
dP̃ =

∫

Ω

1A exp

(
2a

b2
W̃ b2t

4

− 2a2

b4

(
b2t

4

))
dP̃.

Let ft(x, y) denote the joint density function of
(∫ t

0
exp(2W̃u) du, W̃t

)
. Then

Ut(x; a, b) = exp

(
−a2t

2b2

)∫ ∞

b2x
4

∫ ∞

−∞

exp

(
2ay

b2

)
f b2t

4

(v, y) dy dv.

The joint density ft(x, y) has a closed form solution: It is a direct consequence

of equation (6.c) in Yor [21] that ft(x, y) = 0 for x ≤ 0, and

ft(x, y) = ρt(x, y)

∫ ∞

0

exp

(
−z2

2t
− exp(y)

x
cosh(z)

)
sinh(z) sin

(πz
t

)
dz (15)

for x > 0, where

ρt(x, y) =
(
x2
√
2π3t

)−1

exp

(
2xyt+ π2x− t− t exp(2y)

2xt

)
.

Since

p(t, x, a, b) = −∂Ut(x; a, b)

∂x
,

we obtain

p(t, x, a, b) = exp

(
−a2t

2b2

)(
b2

4

)∫ ∞

−∞

exp

(
2ay

b2

)
f b2t

4

(
b2x

4
, y

)
dy.

The expression for p(t, x, a, b) stated in the Lemma is obtained by inserting

the representation for f b2t
4

(b2x/4, y) given in (15), substituting ln(y) for y and,
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finally, rearranging terms.

Let us now define

U(t, x) ≡ P

[∫ t

0

exp

(
ru− σ2

2
u+ σW (u)

)
du > x

]
(16)

= Ut

(
x, r − σ2

2
, σ

)
.

Then it follows directly from (16) and the definition of Ut(x, a, b) that

U(t, x) =

∫ +∞

x

p

(
t, u, r − σ2

2
, σ

)
du for t > 0, x > 0. (17)

As indicated before this expression can be evaluated by running numerical in-

tegration. Additionally, we derive a partial differential equation characterizing

this expression in the following proposition.

Proposition 5. The function U(·, ·) is the unique solution to the following

partial differential equation

1

2
σ2x2Uxx +

[(
σ2 − r

)
x− 1

]
Ux − Ut = 0, for t > 0, x > 0, (18)

with boundary conditions

U(0+, x) = 0 for x > 0

U(0+, 0) = 1

U(t, x) = 1 for t ≥ 0, x ≤ 0 .

Proof. Using the notation

X(t) = exp

(
−rt+

σ2

2
t− σW (t)

)
·
[
x−

∫ t

0

exp

(
ru− σ2

2
u+ σW (u)

)
du

]
,

(19)
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we find that

∫ t

0

exp

(
ru− σ2

2
u+ σW (u)

)
du > x if and only if X(t) < 0,

and therefore that

U(t, x) = P [X(t) < 0 |X(0) = x] . (20)

On the other hand, (19) is the unique strong solution to the stochastic differ-

ential equation

dX(t) =
[(
σ2 − r

)
X(t)− 1

]
dt− σX(t) dW (t), for X(0) = x > 0.

and therefore our statement follows from the Kolmogorov backward equation

(see e.g. Equation 5.7 in Karlin and Taylor [11]). The initial and boundary value

conditions are obvious. That the function U(t, x) defined in (20) is sufficiently

smooth follows from Theorem 2.3.3 in Nualart [17] (see page 133).

5 Quasi-explicit hedge and price of the Asian

option

Theorem 1. The hedging strategy of the arithmetic Asian option fT consists

of investing the amount of

π(t) = V π(t) +
S(t)

T
·G(t) · exp (−r(T − t)) · U(T − t, G(t)) (21)

at time t ∈ [0, T ] in the stock, with U(·, ·) given by (17) or (18), and

G(t) =
1

S(t)

[
K · T −

∫ t

0

S(u) du

]
= − T

S(t)

[
1

T
·
∫ t

0

S(u) du−K

]
. (22)
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The amount invested in the bond is

−S(t)

T
·G(t) · exp (−r(T − t)) · U(T − t, G(t)). (23)

Proof. It follows from Proposition 1 and Proposition 3 that fT ∈ D
1,2 and

therefore that

fT exp (−rT ) ∈ D
1,2 .

Furthermore,

Dt [fT exp (−rT )] = exp (−rT )Dt(fT ) (24)

=

[
fT + 1(gT>0)(ω)

{
K − 1

T

∫ t

0

S(u) du

}]
σ exp (−rT ) .

We now conclude from Proposition 2 that

fT exp (−rT ) = E[fT exp (−rT )] +

∫ T

0

E[Dt(fT exp (−rT )) | F(t)] dW (t). (25)

By definition of a hedging strategy and equation (7) the amount invested in the

stock π(·) satisfies

fT exp (−rT ) = E[fT exp (−rT )] +

∫ T

0

exp (−rt) σπ(t) dW (t). (26)

Note, that we know from an arbitrage argument alone that the initial value

of the hedging strategy must satisfy v0 = E[fT exp (−rT )]. The representation

theorem of Wiener functionals (see for example Korn [13], page 71) states that

the integrand in the representations (24) and (25) is unique and hence that

π(t) =
1

σ
exp (rt) · E [Dt(fT exp (−rT )) | F(t)] . (27)

It follows automatically from the discussion above that this strategy is tame

and a hedge in the sense defined in section 2. Furthermore (0.2.18), (0.2.19) in
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Karatzas [9] together with (9) imply that V π(t) exp (−rt) is a martingale and

hence that

V π(t) exp (−rt) = E[fT exp (−rT ) | F(t)] P− a.s.. (28)

Hence by means of equation (24) and equation (28), we obtain

π(t) = V π(t) + exp (−r(T − t)) ·
[
K − 1

T

∫ t

0

S(u) du

]
· P (gT > 0 | F(t)) . (29)

Using the properties of Brownian motion, it is not difficult to derive that

P (gT > 0 | F(t)) = P

(∫ T

t

exp

([
r − σ2

2

]
· [u− t] + σWu−t

)
du > G(t)

∣∣∣∣∣F(t)

)

= U(T − t, G(t)). (30)

Finally, equation (21) follows from equation (29) and equation (30). Equation

(23) follows from the self–financing condition.

We have already indicated, that – for general reasons of arbitrage – V π(t) in

Theorem 1 is the fair price of the arithmetic Asian option at time t. We provide

the following two formulas (one of them quasi-explicit), which can be used to

compute these values.

Theorem 2. At any time t with 0 ≤ t ≤ T , the fair price of the option fT can

be computed by either

V (t) = exp (−r(T − t))
S(t)

T

∫ +∞

G(t)

U(T − t, x) dx (31)

or

V (t) = exp (−r(T − t))
S(t)

T

∫ +∞

G(t)

(x−G(t)) · p
(
T − t, x, r − σ2

2
, σ

)
dx, (32)

where the function U(·, ·) is calculated by employing Proposition 5 or (17) to-
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gether with Proposition 4, respectively.6 The expression G(t) is defined in The-

orem 1. In particular, the fair price of the arithmetic Asian option fT at time

t = 0 is given by

V (0) = exp (−rT )
S(0)

T

∫ +∞

K·T
S(0)

(
x− K · T

S(0)

)
· p
(
T, x, r − σ2

2
, σ

)
dx. (33)

Proof. According to equation (28), we obtain

V (t) = exp (−r(T − t))E[fT | F(t)] P− a.s.. (34)

Furthermore, it is obvious that

fT =
S(t)

T

[∫ T

t

exp

([
r − σ2

2

]
[u− t] + σ [W (u)−W (t)]

)
du−G(t)

]+
.

(35)

Facilitating the properties of the Brownian motion, it follows from equation (35)

and the definition of function U(·, ·) that

E[fT | F(t)] = −
∫ +∞

G(t)

S(t)
−G(t) + x

T
dU(T − t, x). (36)

Therefore, we obtain equation (32) from equations (34), (36) and (18). For

t = 0 we have equation (33). Finally, it is not difficult to verify that

lim
x→+∞

U(T − t, x) = 0, and lim
x→+∞

x · U(T − t, x) = 0.

Thus, by means of the integration by parts formula, we derive that

E[fT | F(t)] =
S(t)

T

∫ +∞

G(t)

U(T − t, x) dx

6We write V = V π here, as the emphasis is on the option value, rather than the value of
the hedge.
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and consequently, equation (31) also follows from equation (34).

The following Corollary is directly implied by equation (31).

Corollary 1. The amount invested in the stock is always non–negative. Espe-

cially, when
∫ t

0
S(u)du > K · T , i.e. the Asian option is in the money, we have

that

π(t) = exp (−r(T − t))
S(t)

T

∫ +∞

G(t)

x · p
(
T − t, x, r − σ2

2
, σ

)
dx. (37)

Remark 1. By means of equation (21) and equation (31), it is easy to verify

that

π(t) = S(t)
∂V (t)

∂S(t)
, (38)

which means that the Asian option is Delta-hedged. This result can also be

obtained by following the usual Black-Scholes like argument of creating a risk-

free portfolio consisting of one arithmetic average Asian call option and ∆ shares

of the underlying stock or risky asset.

From the put-call-parity for arithmetic average Asian options, we obtain the

following corollary.

Corollary 2. We obtain the fair price at time t ∈ [0, T ] for an arithmetic

average Asian put option via

V̄ (t) = exp (−r(T − t))
S(t)

T

∫ G(t)

0

(G(t)−x) · p
(
T − t, x, r − σ2

2
, σ

)
dx. (39)

The hedging strategy is given as follows. The amount invested in the stock is

π̄(t) = V̄ (t) +G(t) exp (−r(T − t))
S(t)

T
[1− U(T − t, G(t))], (40)

and the amount invested in the bond is V̄ (t)− π̄(t).

18



We also obtain the following expressions for the Greeks delta and gamma.

These Greeks may not only be important for hedging, but also for a general

analysis of risk associated to Asian options. The derivation is straightforward

from the formulas presented here.

Proposition 6. For the Greeks delta and gamma associated to an arithmetic

average Asian call option we have

∆ ≡ ∂V (t)

∂S(t)

=
1

S(t)

[
V (t) +

S(t)

T
·G(t) · U(T − t, G(t)) · exp (−r(T − t))

]
,(41)

Γ ≡ ∂2V (t)

∂2S(t)

=
(G(t))2

TS(t)
p

(
T − t, G(t); r − σ2

2
, σ

)
· exp (−r(T − t)) , (42)

∂V (t)

∂K
= −U(T − t, G(t)) · exp (−r(T − t)) . (43)

We do not provide an expression for the vega of an Asian option here, but re-

fer to Carr, Ewald, and Xiao [3] instead for an interesting result on the volatility

dependence of Asian option prices.

6 Numerical Analysis

6.1 Estimating U(t, x)

Theoretically, there are three possibilities to calculate U(t, x). First, using equa-

tion (17) to calculate U(t, x) as the solution of a triple integral. Second, getting

U(t, x) as the solution of the partial differential equation (18) with the corre-

sponding boundary conditions. The third possibility is using a Monte Carlo

method to calculate U(t, x) via equation (16).

Let us consider the first possibility. Even though there exists a closed form
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solution for U in form of equation (17), it entails calculating a triple inte-

gral. Additionally, even though the underlying function of p
(
t, x, r − σ2

2
, σ
)

(see Proposition 4) is smooth, it has various singularities, numerically speaking.

In order to be more precise, let us define

f(t, x, y, v, a, b) = Γt(x) ·Ψt(v) · y
2a
b2 · exp

(
− 2

b2x

[
y2 + 2y cosh(v) + 1

])
,

where Γt and Ψt have been defined in Proposition 4. With this notation, we

have

p(t, x, a, b) =

∫ ∞

0

∫ ∞

0

f(t, x, y, v, a, b) dy dv (44)

and

U(t, x) =

∫ ∞

x

p

(
t, u, r − σ2

2
, σ

)
du for t > 0, x > 0

=

∫ ∞

x

∫ ∞

0

∫ ∞

0

f

(
t, u, y, v, r − σ2

2
, σ

)
dy dv du . (45)

In this section, let us choose r = 0.035 and σ = 0.25, that is r − σ2

2
= 0.00375.

Choosing r = 0.03 would lead to r− σ2

2
= −0.00125, which causes f to converge

only slowly to zero in the y-variable for y → ∞. The larger r− σ2

2
is, the faster

is the convergence.

Clearly, f is periodic in the v–variable with changing amplitude (see Figures

1 to 2). The period length is σ2·t
2
, that is, the smaller t – the time to maturity,

the smaller the period length. The amplitude might increase at first, however,

eventually it will decrease (compare with Figure 2). It is difficult to integrate f

along v, because the values for which the local maximum and the local minimum

in each period are attained is different (see Figure 2). This implies that the in-

tegral has to be calculated anew for each period. Moreover, if the amplitude

is first increasing, the integral which is taken over the first periods is negative.

Integrating over all periods the integral will be non–negative, however, in prac-

tice, one can only integrate over a finite number of periods which might lead to
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Figure 1: The Function f(0.5, 0.3, y, v, 0.00375, 0.25)
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This figure shows the function f for t = 0.5, u = 0.3, r = 0.035, and
σ = 0.25. Please be aware of the scales.

the situation that the integral is still negative (what is not possible, since it is a

density). Using advanced numerical methods such as the Levin transformation

did not remedy the situation.

Except for the large values, f is not too difficult to integrate over the y–

variable. Note also that, the smaller the values are for u and t, the larger are the

values of f . The chosen values for u and t in the figures (u = 0.3 and t = 0.5)

are by no means the smallest values needed later. However, f gets already very

large which makes it very difficult to get an accurate estimate for the integral.

Altogether, we think that it is very difficult, not to say impossible, to get an

accurate estimate for p using equation (44), let alone for U using equation (45).

Remember that the boundary condition for U is given by U(0, x) = 1l{x<0}(x),

which is discontinuous at zero in the x variable. Since any PDE solver needs
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Figure 2: The Function f(0.5, 0.3, 0.0089774, v, 0.00375, 0.25)
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This figure shows the function f for t = 0.5, u = 0.3, y = 0.0089774,
r = 0.035, and σ = 0.25. Please note the scales.

continuity in x for a good approximation, the discontinuity is the major source

of error made by any PDE solver. This error can be reduced by using an up-

wind scheme together with an adapted mesh for the PDE solver. However, this

error is intrinsic to the PDE solver and cannot be eliminated with any PDE

solver. On the other hand, using a Monte Carlo method to estimate U(t, x) via

equation (16) is promising since it does not need any structure in the x variable.

Note that equation (16) implies only a dependence structure in the t variable.

However, since the random source is a Brownian motion, even the t dependency

is non–existent. This means, that it is possible to estimate U(t, x) for each t

and x on its own (– although we will not use this property for our purposes,

that is we will use the t dependency for stability reasons). Therefore, we used
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the Monte Carlo approach in the following, that is equation (16), to calculate

U(t, x) (see Figure 3) and
∫∞

G(t)
U(T − t, x) dx (see Figure 4). In particular, note

that it is easier to get a good estimate of the integral using the Monte Carlo

approach then a PDE solver due to the properties discussed above.

All figures in this paper are generated using Matlab. In particular, the

random number generator used for the Monte Carlo method was the Mersenne

Twister which is the default random number generator of Matlab.

Figure 3: The Function U(T − t, G(t))

This figure shows the function U(T −t, G(t)) for r = 0.035 and σ = 0.25.
The function U has been approximated by using n = 10, 000 simulations
for each t and x.
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Figure 4: The Function
∫∞

G(t)
U(T − t, x) dx

This figure shows the function
∫∞

G(t)
U(T − t, x) dx for r = 0.035 and

σ = 0.25. The function U has been approximated by using n = 10, 000
simulations for each t and x.

Before we analyse the solutions further, let us recall that

π(t) = e−r(T−t)S(t)

T

[∫ +∞

G(t)

U(T − t, x) dx+G(t) · U(T − t, G(t))

]
(46)

V π(t) = e−r(T−t)S(t)

T

∫ +∞

G(t)

U(T − t, x) dx . (47)
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In particular, one gets for t = T

π(T ) =
S(T )

T

[∫ +∞

G(T )

U(0, x) dx+G(t) · U(0, G(T ))

]

=
S(T )

T

[∫ 0−

G(T )

1l{x<0} dx+G(t) · 1l{G(T )<0}

]

= 0 , and (48)

V π(T ) =
S(T )

T

∫ +∞

G(T )

U(0, x) dx

= −S(T )

T
G(t) · 1l{G(T )<0} , (49)

which is greater or equal to zero. Since U is a probability, one has that U(t, x) ∈
[0, 1] for all t, x. Most important is the area where U is strictly within the

corresponding open interval, which is depicted in Figure 5. The area between

the two curves is approximately the area where U is strictly within the open

interval.

6.2 Calculating and Analysing the Hedge Ratio π(t,G(t),S(t))
V (t,G(t),S(t))

Observe that the hedging strategy π(t, G(t), S(t)) as well as the fair price of the

Asian option V (t, G(t), S(t)) depends on t, G(t), and S(t), with G(t) defined in

(22). However, if the hedging strategy is written as the fraction invested in the

risky asset, one arrives at

π(t, G(t), S(t))

V (t, G(t), S(t))
= 1 +

G(t) · U(T − t, G(t))∫∞

G(t)
U(T − t, x) dx

,

which depends only on t and G(t). Hence, we will concentrate on this expression

in the following. Apparently, the fraction invested in the risk–free asset is given

by

1− π(t, G(t), S(t))

V (t, G(t), S(t))
= − G(t) · U(T − t, G(t))∫∞

G(t)
U(T − t, x) dx

.
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Figure 5: Two Level Lines of U(t, x)
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This figure approximates the level lines for U(t, x) ≥ 1 − 10−ε (green
dash–dotted line) and for U(t, x) ≤ 10−ε (black solid line), where ε = 10,
r = 0.035, and σ = 0.25. The level lines have been approximated by
using n = 10, 000 simulations for each t and x. The approximations
have been inproved by using the bisection method.

Notice that π(t,G(t),S(t))
V (t,G(t),S(t))

is not only independent of S(t) (and thus S(0)), but

is also independent of K and T . The fraction depends only on r and σ which

are the parameters of the market (risk–free interest rate and volatility of the

underlying risky asset), but not on the parameters of the actual option contract.

The parameters of the actual option contract enter the fraction only via the

random variable G(t). Hence π(t,G(t),S(t))
V (t,G(t),S(t))

holds for any Asian call option contract

which is based on an underlying risky asset that has volatility σ and is written

in a market with risk–free interest rate r.

Observe that U(T − t, x) is non–negative (it corresponds to a probability
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measure), hence so is the integral
∫∞

G(t)
U(T − t, x) dx. Moreover,

∫∞

0
U(T −

t, x) dx > 0. Altogether, this gives

π(t, G(t), S(t))

V (t, G(t), S(t))





> 1 if G(t) > 0

= 1 if G(t) = 0

< 1 if G(t) < 0





.

This behavior can be observed in Figure 6. Moreover, Figure 6 shows clearly

that
π(t, G(t), S(t))

V (t, G(t), S(t))
−→ 0 if T − t −→ 0 and G(t) < 0 .

Note also that the numerical solution is unstable for T − t close to 0 and for

G(t) large, that is, the option is out–of–the–money. In this case, both π and V

converge to zero as the maturity of the option is approached. The instability of

the approximation in this case implies that V converges faster to zero then π.

Observe that π and V are not that unstable (and they are important to

practitioners), only π
V

is unstable in that way that its scale is not very reliable

for G(t) > 0. However, π
V
has the advantage of being independent of S(t) (thus

one dimension less) and it depends only on σ and r. The interesting result which

can be established here, is that the higher the stock price is (that is the higher

the present value of the underlying Asian option is [or the more is the Asian

option in–the–money]), the lower is the fraction invested in the stock within the

hedging strategy.

6.3 Calculating the Delta and Comparing it to the Ap-

proach of Jacques

The Asian option’s delta is given in equation (41), Proposition 6. Together with

equation (47), this gives

∂V (t)

∂S(t)
=

π(t)

S(t)
=

e−r(T−t)

T

[∫ +∞

G(t)

U(T − t, x) dx+G(t) · U(T − t, G(t))

]
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Figure 6: The fraction invested in the risky asset, π(t,G(t),S(t))
V (t,G(t),S(t))
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This figure shows the function π(t,G(t),S(t))
V (t,G(t),S(t)) for r = 0.035, σ = 0.25,

and T = 1. The fraction has been approximated by using n = 10, 000
simulations for each t and x.

The delta represents the number of shares purchased to setup the hedge.

Considering in–the–money Asian options, the delta suggests to buy almost

one share in the underlying risky asset at the starting point of the averaging

process (see Figure 7). The position in the risky asset will be dissolved in

what seems to be a linear way over the life time of the averaging process for as

long as the option is in–the–money. For out–of–the–money options, the delta

is significantly smaller then one and for deep out–of–the–money options, it is

close to one. Moreover, for out–of–the–money options, the position in the risky

asset is usually dissolved faster and in a non–linear way, that is, the delta is

already zero (or close to zero) long before the option expires. These results
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Figure 7: The Delta of an Asian Call Option, π(t)
S(t)

This figure shows the delta of an Asian call option π(t)
S(t) over G(t) and

the time to maturity T − t for r = 0.035, σ = 0.25, and T = 1.

are qualitatively the same as the results of Jacques [15]. However, our results

are such that the delta does not always start with one at the beginning of the

averaging process. It actually depends on the market parameters r and σ as well

as the maturity T of the option where the delta starts for in–the–money options.

If, for instance, in the example of Figure 7, r and T are increased, the initial delta

will decrease. We are convinced that this result carries over to the approach

of Jacques [15]. This is, because Jacques uses a very short averaging period

of 30 days (we use one year and increased it to five years). Nevertheless, the

seemingly linear decrease of the delta for in–the–money options is not affected

by this.
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Figure 8: The fraction invested in the risk–free asset, V (t,G(t),S(t))−π(t,G(t),S(t))
S(t)

This figure shows the function V (t,G(t),S(t))−π(t,G(t),S(t))
S(t) for r = 0.035,

σ = 0.25, and T = 1.

Figure 8 depicts the fraction invested in the risk–free asset, where the frac-

tion is taken with respect to the price of the risky underlying S(t). Notice that

the fraction invested in the risk–free asset is positive only if G(t) < 0. However,

for t = 0 (that is, at the beginning of the lifetime of the Asian option), G(0) < 0

implies that K < 0 which is usually not feasible. Thus, initially, the hedging

strategy consists of going short in the risk–free asset.

As already indicated, it depends on the specification of the contract of the

Asian call option, at which G(0) this specific option will start on the various

surfaces of π(t,G(t),S(t))
V (t,G(t),S(t))

or π(t,G(t),S(t))
S(t)

at time t = 0. For convenience, let us

assume that r = 0.035, σ = 0.25, and T = 1 as above. Moreover, assume that

S(0) = 100, K = 100. Hence, it is straightforward to calculate that G(0) =
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1. Hence, in this section, the Asian option always starts at–the–money and

possibly move quickly in–the–money or out–of–the–money while Jacques [15]

starts either in–the–money or out–of–the–money. Instead of considering specific

sample paths of S(t) and calculating the corresponding G(t) of this, let us do

a more general analysis. Figure 9 depicts the 0.5%, the 50% (the median), and

the 99.5% quantiles of S(t) for t ∈ [0, 1], which are straightforward to calculate.

Together, the upper and the lower curve constitute the 99% confidence interval

(see Figure 9).

Figure 9: Quantiles of S(t)
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This figure shows the quantiles of S(t) where the parameters are µ =
0.035, σ = 0.25, and t ∈ [0, 1].

Figure 10 shows the 0.5%, the 50% (the median), and the 99.5% quantiles

of G(t) for t ∈ [0, 1] given that S(t) follows one of the three lines given in Figure

9. The lower three depicted quantiles of G(t) are calculated on the basis that

S(t) moves along the 99.5% quantile, the upper three plotted quantiles of G(t)
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are calculated on the basis that S(t) is the 0.5% quantile, and the remaining

quantiles of G(t) are based on the assumption that S(t) is the median. The

quantiles of G(t) have been calculated by simulating 10, 000 paths between S(0)

and S(t) and computing the corresponding G(t) for each path. The quantiles

of G(t) have been estimated of these 10, 000 values using order statistics. This

procedure has been done for every t ∈ [0, 1] independently. Figure 10 gives us a

good idea about the possible range of G(t). Observe that G(t) will most likely

be in the range of [−0.4, 1.2] for t ∈ [0, 1]. The range is much smaller for fixed

t ∈ [0, 1].

Figure 10: Quantiles of G(t), given S(t)
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This figure shows the quantiles of G(t) given that S(t) is one of the three
values given in Figure 9. The parameters are set to r = 0.035, σ = 0.25,
and T = 1.

Figure 11 shows the most likely range for the fraction of π(t,G(t),S(t))
S(t)

given

the quantiles of G(t) which are based on the assumption that S(t) moves

along its 0.5% quantile (lower (undistinguishable) three lines), its median (the
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three clearly distinguishable lines in the middle), and its 99.5% quantile (up-

per (undistinguishable) three lines). Figure 12 is the corresponding figure of
V (t,G(t),S(t))−π(t,G(t),S(t))

S(t)
given the quantiles of G(t) which are based on on the

assumption that S(t) moves along its 0.5% quantile (initially the upper (undis-

tinguishable) three lines), its median (the three clearly distinguishable lines

which are initially in the middle), and its 99.5% quantile (initially the lower

three lines), respectively.

Figure 11: Evolution of π(t,G(t),S(t))
S(t)

given the various quantiles of G(t)
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This figure shows the evolution of π(t,G(t),S(t))
S(t) given the quantiles of

G(t) which are based on the assumption that S(t) moves along its 0.5%
quantile (lower (undistinguishable) three lines), its median (the three
clearly distinguishable lines in the middle), and its 99.5% quantile (upper
(undistinguishable) three lines). The parameters are set to r = 0.035,
σ = 0.25, and T = 1.

If S(t) moves along the 0.5% quantile, the Asian option is deep out–of–the–

money and the hedging strategy consists of dissolving the hedging portfolio in
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Figure 12: Evolution of V (t,G(t),S(t))−π(t,G(t),S(t))
S(t)

given the various quantiles of

G(t)
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This figure shows the evolution of V (t,G(t),S(t))−π(t,G(t),S(t))
S(t) given the

quantiles of G(t) which are based on the assumption that S(t) moves
along its 0.5% quantile (initially the upper (undistinguishable) three
lines), its median (the three clearly distinguishable lines which are ini-
tially in the middle), and its 99.5% quantile (initially the lower three
lines). The parameters are set to r = 0.035, σ = 0.25, and T = 1.

the risky underlying (lower (undistinguishable) three lines in Figure 11) and in

the risk–free asset (upper (undistinguishable) three lines in Figure 12). In this

situation, the option has value zero at maturity which is reflected by the fact

that the hedging portfolio has also value zero.

If S(t) moves along the 99.5% quantile, the Asian option is deep in–the–

money and the hedging strategy consists of first increasing both the long position

in the risky asset and the short position in the risk–free asset. Between t = 0.05

and t = 0.1 this strategy changes. That is, over the remaining lifetime of the
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option, the long position in the risky asset will be liquidated in an seemingly

linear way (see upper (undistinguishable) three lines in Figure 11). This is in

line with the observation of Jacques [15]. At the same time, the short position

in the risk–free asset (lower (initially undistinguishable) three lines in Figure

12) is turned into a long position (in all three cases). In this situation, the

option has a positive value in all three scenarios at maturity which is reflected

by the fact that the hedging portfolio has also positive values.

If S(t) moves along its median, the hedging portfolio will be liquidated

almost linearly over the lifetime of the option in both positions, the risky asset

(see Figure 11, the green line in the middle) and the risk–free asset (see Figure

12, the green line which is initially in the middle). The value of the option (and

hence of the hedge) at maturity is about zero. Most interesting is the confidence

interval in this case. If the option is out–of–the–money (that is the risky asset

moves along the 0.5% quantile), both positions in the hedging portfolio are

closed faster. In particular, the hedge is closed before the maturity of the

option, that is between t = 0.6 and t = 0.7 (and the maturity is at T = 1). This

is the scenario where the corresponding lines in Figures 11 and 12 join the deep

out-of–the–money scenario between t = 0.6 and t = 0.7. The terminal value of

both option and hedge is zero. However, considering the 99.5% quantile, the

corresponding hedging strategy is to decrease the long position at most slightly

up to the time between t = 0.5 and t = 0.6 at which point it meets the lines

for the deep in–the–money case and it follows that line from thereon. That is,

from that time on the long position in the stock is liquidated in a linear way

over the remaining lifetime of the option. Similarly, the corresponding short

position in the risk–free asset is in this scenario reduced at most slightly up to

between t = 0.4 and t = 0.5 at which point the short position in the risk–free

asset is turned in an almost linear way into a long position at maturity. That is,

the option matures in–the–money. This case is not considered by Jacques [15].

He considers only an in–the–mone scenario and an out–of–the–money scenario,

but not an at–the–money scenario. Nevertheless, we also observe a liquidation
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of the long position in the risky asset in the at–the–money case which is also

seemingly linear.

7 Conclusions

We have derived quasi analytic expressions for price and hedge of an arith-

metic Asian call option using Malliavin calculus as well as PDE techniques. We

have tested their performance and presented various numerical results using the

Monte Carlo method as this gave the most reliable results. Moreover, we pro-

vided a comparative analysis of the hedge and, in particular, observed that the

lower the current value of the underlying Asian option is, the higher the frac-

tion invested in the stock within the hedging strategy. Finally, we compared

our results to those obtained in Jacques [15].

It remains to future research to verify that the seemingly linear decrease

of the delta for in–the–money options is indeed linear. Moreover, it would be

interesting and it would improve the accuracy of the calculation of the integral of

U (see Figure 4) if an explicit expression (even in the form of an approximation,

e.g. using the approximation of Jacques [15]) for the level lines (depicted in

Figure 5) is derived. Finally, it remains for future research to get a more explicit

expression for the relationship between the delta and its parameters, that is r,

σ, and T , especially for in–the–money options.
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