419 research outputs found

    The treatment of printing and packaging wastewater by electrocoagulation– flotation: the simultaneous efficacy of critical parameters and economics

    Get PDF
    In this work, electrocoagulation–flotation (ECF) following sedimentation was applied as a printing and packaging wastewater treatment using four Al electrodes with a parallel monopolar configuration. A sedimentation process was applied after the ECF as a post-treatment phase to remove large pollutants. The simultaneous efficacy of the operating parameters initial color content (1,843.44–12,156.56 ADMI), initial pH (3.56–10.44), current density (6.02–22.18 mA/cm2), and treatment time (5.62–74.38 min) on color and chemical oxygen demand (COD) removal efficiencies were evaluated alongside processing costs. Response surface methodology (RSM) and central composite design (CCD) optimized these key parameters to achieve the highest removal efficiencies and lowest operating costs. Based on the results analyzed by RSM-CCD, using initial color content of 5,576.38 ADMI, initial pH of 7.29, the current density of 18.49 mA/cm2, and treatment time of 59.76 min as optimum operational conditions can result in 97.8% and 92.1% for color and COD removal efficiencies, respectively. At these optimum conditions, operating costs (OPCs), including electrodes material and energy consumption, were 0.07 US/(kgcolorremoved)and0.4US/(kg color removed) and 0.4 US/(kg COD removed). The results confirm ECF-sedimentation as a promising and costeffective tool for the treatment of printing and packaging wastewater

    Identification of a robust gene signature that predicts breast cancer outcome in independent data sets

    Get PDF
    BACKGROUND: Breast cancer is a heterogeneous disease, presenting with a wide range of histologic, clinical, and genetic features. Microarray technology has shown promise in predicting outcome in these patients. METHODS: We profiled 162 breast tumors using expression microarrays to stratify tumors based on gene expression. A subset of 55 tumors with extensive follow-up was used to identify gene sets that predicted outcome. The predictive gene set was further tested in previously published data sets. RESULTS: We used different statistical methods to identify three gene sets associated with disease free survival. A fourth gene set, consisting of 21 genes in common to all three sets, also had the ability to predict patient outcome. To validate the predictive utility of this derived gene set, it was tested in two published data sets from other groups. This gene set resulted in significant separation of patients on the basis of survival in these data sets, correctly predicting outcome in 62–65% of patients. By comparing outcome prediction within subgroups based on ER status, grade, and nodal status, we found that our gene set was most effective in predicting outcome in ER positive and node negative tumors. CONCLUSION: This robust gene selection with extensive validation has identified a predictive gene set that may have clinical utility for outcome prediction in breast cancer patients

    Lower intrafamilial transmission rate of hepatitis B in patients with hepatitis D coinfection: A data-mining approach

    Get PDF
    demographic and viral characteristics of family members affect the transmission rate. Objectives: In this study, we have used data mining techniques to investigate the impact of different variables in intrafamilial transmission of HBV infection. Patients and Methods: demographic information, viral markers, and medical history of 330 patients with chronic hepatitis B and their offspring attending a referral center in Tehran were collected. Data-mining techniques were administered to detect patterns. Results: The overall transmission rate was 15.7 (5.4 and 27.3 for male and female index cases respectively). In female patients, HBe Ag positively affected the transmission rate (49 vs. 23.4). There was a dominant change in transmission rate of female patients with negative results for Hbe Ag with HDV coinfection, where the transmission rate changed from 25 in patients with negative results for HDV Ab to 5 in those with positive results. In Hbe Ag negative male index cases, the transmission rate was 1.3 in cases with positive results for HDV Ab compared to 7 in those with negative findings. The overall transmission rate was statistically different between patients with positive and negative results for HDV Ab (P = 0.016). Conclusions: There is a minor but consistent pattern change in the presence of HDV infection which reduces familial transmission of HBV, especially in female patients with negative results for HBe Ag. © 2013, Kowsar Corp

    Quality of Care in Contraceptive Services Provided to Young People in Two Ugandan Districts: A Simulated Client Study

    Get PDF
    BACKGROUND: Low and inconsistent use of contraceptives by young people contributes to unintended pregnancies. This study assessed quality of contraceptive services for young people aged 15-24 in two rural districts in Uganda. METHODS: Five female and two male simulated clients (SCs) interacted with 128 providers at public, private not-for-profit (PNFP), and private for profit (PFP) health facilities. After consultations, SCs were interviewed using a structured questionnaire. Six aspects of quality of care (client's needs, choice of contraceptive methods, information given to users, client-provider interpersonal relations, constellation of services, and continuity mechanisms) were assessed. Descriptive statistics and factor analysis were performed. RESULTS: Means and categorized quality scores for all aspects of quality were low in both public and private facilities. The lowest quality scores were observed in PFP, and medium scores in PNFP facilities. The choice of contraceptive methods and interpersonal relations quality scores were slightly higher in public facilities. Needs assessment scores were highest in PNFP facilities. All facilities were classified as having low scores for appropriate constellation of services. Information given to users was suboptimal and providers promoted specific contraceptive methods. Minority of providers offered preferred method of choice and showed respect for privacy. CONCLUSIONS: The quality of contraceptive services provided to young people was low. Concurrent quality improvements and strengthening of health systems are needed

    Differential association of two PTPN22 coding variants with Crohn’s disease and ulcerative colitis

    Get PDF
    2 páginas.-- Póster presentado al 5º European Workshop on Immune-Mediated Inflammatory Diseases celebrado en Sitges (Barcelona) dxel 1 al 3 de Diciembre de 2010.-- et al.The PTPN22 gene is an important risk factor for human autoimmunity. Two PTPN22 missense-SNPs, both with functional influence, the R620W (1858C>T, rs2476601) in exon 14 and the R263Q (788G>A, rs33996649) in exon 10 have been associated with autoimmune diseases [1-4].Peer reviewe

    Gene encoder: a feature selection technique through unsupervised deep learning-based clustering for large gene expression data

    Get PDF
    © 2020, Springer-Verlag London Ltd., part of Springer Nature. Cancer is a severe condition of uncontrolled cell division that results in a tumor formation that spreads to other tissues of the body. Therefore, the development of new medication and treatment methods for this is in demand. Classification of microarray data plays a vital role in handling such situations. The relevant gene selection is an important step for the classification of microarray data. This work presents gene encoder, an unsupervised two-stage feature selection technique for the cancer samples’ classification. The first stage aggregates three filter methods, namely principal component analysis, correlation, and spectral-based feature selection techniques. Next, the genetic algorithm is used, which evaluates the chromosome utilizing the autoencoder-based clustering. The resultant feature subset is used for the classification task. Three classifiers, namely support vector machine, k-nearest neighbors, and random forest, are used in this work to avoid the dependency on any one classifier. Six benchmark gene expression datasets are used for the performance evaluation, and a comparison is made with four state-of-the-art related algorithms. Three sets of experiments are carried out to evaluate the proposed method. These experiments are for the evaluation of the selected features based on sample-based clustering, adjusting optimal parameters, and for selecting better performing classifier. The comparison is based on accuracy, recall, false positive rate, precision, F-measure, and entropy. The obtained results suggest better performance of the current proposal

    Gene Expression Profiling via Multigene Concatemers

    Get PDF
    We established a novel method, Gene Expression Profiling via Multigene Concatemers (MgC-GEP), to study multigene expression patterns simultaneously. This method consists of the following steps: (1) cDNA was obtained using specific reverse primers containing an adaptor. (2) During the initial 1–3 cycles of polymerase chain reaction (PCR), the products containing universal adaptors with digestion sites at both termini were amplified using specific forward and reverse primers containing the adaptors. (3) In the subsequent 4–28 cycles, the universal adaptors were used as primers to yield products. (4) The products were digested and ligated to produce concatemers. (5) The concatemers were cloned into the vector and sequenced. Then, the occurrence of each gene tag was determined. To validate MgC-GEP, we analyzed 20 genes in Saccharomyces cerevisiae induced by weak acid using MgC-GEP combined with real-time reverse transcription (RT)-PCR. Compared with the results of real-time RT-PCR and the previous reports of microarray analysis, MgC-GEP can precisely determine the transcript levels of multigenes simultaneously. Importantly, MgC-GEP is a cost effective strategy that can be widely used in most laboratories without specific equipment. MgC-GEP is a potentially powerful tool for multigene expression profiling, particularly for moderate-throughput analysis

    A proteomic approach for the identification of novel lysine methyltransferase substrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signaling via protein lysine methylation has been proposed to play a central role in the regulation of many physiologic and pathologic programs. In contrast to other post-translational modifications such as phosphorylation, proteome-wide approaches to investigate lysine methylation networks do not exist.</p> <p>Results</p> <p>In the current study, we used the ProtoArray<sup>® </sup>platform, containing over 9,500 human proteins, and developed and optimized a system for proteome-wide identification of novel methylation events catalyzed by the protein lysine methyltransferase (PKMT) SETD6. This enzyme had previously been shown to methylate the transcription factor RelA, but it was not known whether SETD6 had other substrates. By using two independent detection approaches, we identified novel candidate substrates for SETD6, and verified that all targets tested <it>in vitro </it>and in cells were genuine substrates.</p> <p>Conclusions</p> <p>We describe a novel proteome-wide methodology for the identification of new PKMT substrates. This technological advance may lead to a better understanding of the enzymatic activity and substrate specificity of the large number (more than 50) PKMTs present in the human proteome, most of which are uncharacterized.</p
    corecore