82 research outputs found

    Graded Smad2/3 Activation Is Converted Directly into Levels of Target Gene Expression in Embryonic Stem Cells

    Get PDF
    The Transforming Growth Factor (TGF) β signalling family includes morphogens, such as Nodal and Activin, with important functions in vertebrate development. The concentration of the morphogen is critical for fate decisions in the responding cells. Smad2 and Smad3 are effectors of the Nodal/Activin branch of TGFβ signalling: they are activated by receptors, enter the nucleus and directly transcribe target genes. However, there have been no studies correlating levels of Smad2/3 activation with expression patterns of endogenous target genes in a developmental context over time. We used mouse Embryonic Stem (ES) cells to create a system whereby levels of activated Smad2/3 can be manipulated by an inducible constitutively active receptor (Alk4*) and an inhibitor (SB-431542) that blocks specifically Smad2/3 activation. The transcriptional responses were analysed by microarrays at different time points during activation and repression. We identified several genes that follow faithfully and reproducibly the Smad2/3 activation profile. Twenty-seven of these were novel and expressed in the early embryo downstream of Smad2/3 signalling. As they responded to Smad2/3 activation in the absence of protein synthesis, they were considered direct. These immediate responsive genes included negative intracellular feedback factors, like SnoN and I-Smad7, which inhibit the transcriptional activity of Smad2/3. However, their activation did not lead to subsequent repression of target genes over time, suggesting that this type of feedback is inefficient in ES cells or it is counteracted by mechanisms such as ubiquitin-mediated degradation by Arkadia. Here we present an ES cell system along with a database containing the expression profile of thousands of genes downstream of Smad2/3 activation patterns, in the presence or absence of protein synthesis. Furthermore, we identify primary target genes that follow proportionately and with high sensitivity changes in Smad2/3 levels over 15–30 hours. The above system and resource provide tools to study morphogen function in development

    Differential Phagocytosis of White versus Opaque Candida albicans by Drosophila and Mouse Phagocytes

    Get PDF
    The human fungal pathogen Candida albicans resides asymptomatically in the gut of most healthy people but causes serious invasive diseases in immunocompromised patients. Many C. albicans strains have the ability to stochastically switch between distinct white and opaque cell types, but it is not known with certainty what role this switching plays in the physiology of the organism. Here, we report a previously undescribed difference between white and opaque cells, namely their interaction with host phagocytic cells. We show that both Drosophila hemocyte-derived S2 cells and mouse macrophage-derived RAW264.7 cells preferentially phagocytose white cells over opaque cells. This difference is seen both in the overall percentage of cultured cells that phagocytose white versus opaque C. albicans and in the average number of C. albicans taken up by each phagocytic cell. We conclude that susceptibility to phagocytosis by cells of the innate immune system is an important distinction between white and opaque C. albicans, and propose that one role of switching from the prevalent white form into the rarer opaque form may be to allow C. albicans to escape phagocytosis

    SnoN expression is differently regulated in microsatellite unstable compared with microsatellite stable colorectal cancers

    Get PDF
    BACKGROUND: SnoN is an important regulator of the transforming growth factor beta (TGFβ) signalling pathway and has been shown to exhibit both tumour promotion and suppression activity. METHODS: To further explore the role of this complex molecule in colorectal tumorigenesis, we examined 52 paired normal and tumour colorectal specimens stratified by level of microsatellite instability; 18 with high-level microsatellite instability (MSI-H) and 34 microsatellite stable (MSS). SnoN transcript expression was quantitated by real-time PCR and analysed with respect to clinical indicators of prognosis. RESULTS: Within the MSI-H subgroup, SnoN was commonly either up-regulated (6/18, 33%) or down-regulated (7/18, 39%). A significantly different distribution of SnoN expression was observed in MSS cancers compared with MSI-H (P ≤ 0.001). Whilst 17/34 (50%) of MSS tumours demonstrated up-regulation, none showed down-regulated expression. Within the MSI-H subgroup, up-regulation was significantly correlated with lack of repeat tract mutation in the TGFβRII gene (P ≤ 0.025), suggesting that SnoN is more frequently up-regulated in the presence of functional TGFβ signalling. CONCLUSION: Together these data support the notion that SnoN has both oncogenic and tumour suppressive properties depending on other genetic changes within the tumour, and that the MSI-H pathway of colorectal tumorigenesis presents an excellent model for the study of these opposing functions

    Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity.</p> <p>Findings</p> <p>Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene.</p> <p>Conclusions</p> <p>The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of <it>cis</it>-regulatory elements.</p

    Downregulation of the anaphase-promoting complex (APC)7 in invasive ductal carcinomas of the breast and its clinicopathologic relationships

    Get PDF
    INTRODUCTION: The anaphase-promoting complex (APC) is a multiprotein complex with E3 ubiquitin ligase activity, which is required for the ubiquitination of securin and cyclin-B. Moreover, the mitotic spindle checkpoint is activated if APC activation is prevented. In addition, several APC-targeting molecules such as securin, polo-like kinase, aurora kinase, and SnoN have been reported to be oncogenes. Therefore, dysregulation of APC may be associated with tumorigenesis. However, the clinical significance and the involvement of APC in tumorigenesis have not been investigated. METHODS: The expression of APC7 was immunohistochemically investigated in 108 invasive ductal carcinomas of the breast and its relationship with clinicopathologic parameters was examined. The expression of APC7 was defined as positive when the summed scores of staining intensities (0 to 3+) and stained proportions (0 to 3+) exceeded 3+. RESULTS: Positive APC7 expression was less frequent than its negative expression when histologic (P = 0.009) or nuclear grade (P = 0.009), or mitotic number (P = 0.0016) was elevated. The frequency of APC7 negative expression was higher in high Ki-67 or aneuploid groups than in low Ki-67 or diploid groups. CONCLUSION: These data show that loss of APC7 expression is more common in breast carcinoma cases with poor prognostic parameters or malignant characteristics. They therefore suggest that dysregulation of APC activity, possibly through downregulation of APC7, may be associated with tumorigenesis in breast cancer

    Effective but Costly, Evolved Mechanisms of Defense against a Virulent Opportunistic Pathogen in Drosophila melanogaster

    Get PDF
    Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost

    The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature

    Get PDF
    Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets

    Analysis of Endocytic Pathways in Drosophila Cells Reveals a Conserved Role for GBF1 in Internalization via GEECs

    Get PDF
    In mammalian cells, endocytosis of the fluid phase and glycosylphosphatidylinositol-anchored proteins (GPI-APs) forms GEECs (GPI-AP enriched early endosomal compartments) via an Arf1- and Cdc42-mediated, dynamin independent mechanism. Here we use four different fluorescently labeled probes and several markers in combination with quantitative kinetic assays, RNA interference and high resolution imaging to delineate major endocytic routes in Drosophila cultured cells. We find that the hallmarks of the pinocytic GEEC pathway are conserved in Drosophila and identify garz, the fly ortholog of the GTP exchange factor GBF1, as a novel component of this pathway. Live confocal and TIRF imaging reveals that a fraction of GBF1 GFP dynamically associates with ABD RFP (a sensor for activated Arf1 present on nascent pinosomes). Correspondingly, a GTP exchange mutant of GBF1 has altered ABD RFP localization in the evanescent field and is impaired in fluid phase uptake. Furthermore, GBF1 activation is required for the GEEC pathway even in the presence of Brefeldin A, implying that, like Arf1, it has a role in endocytosis that is separable from its role in secretion

    Molecular Evolution of Phosphoprotein Phosphatases in Drosophila

    Get PDF
    Phosphoprotein phosphatases (PPP), these ancient and important regulatory enzymes are present in all eukaryotic organisms. Based on the genome sequences of 12 Drosophila species we traced the evolution of the PPP catalytic subunits and noted a substantial expansion of the gene family. We concluded that the 18–22 PPP genes of Drosophilidae were generated from a core set of 8 indispensable phosphatases that are present in most of the insects. Retropositons followed by tandem gene duplications extended the phosphatase repertoire, and sporadic gene losses contributed to the species specific variations in the PPP complement. During the course of these studies we identified 5, up till now uncharacterized phosphatase retrogenes: PpY+, PpD5+, PpD6+, Pp4+, and Pp6+ which are found only in some ancient Drosophila. We demonstrated that all of these new PPP genes exhibit a distinct male specific expression. In addition to the changes in gene numbers, the intron-exon structure and the chromosomal localization of several PPP genes was also altered during evolution. The G−C content of the coding regions decreased when a gene moved into the heterochromatic region of chromosome Y. Thus the PPP enzymes exemplify the various types of dynamic rearrangements that accompany the molecular evolution of a gene family in Drosophilidae
    corecore