63 research outputs found

    Hiding from the Moonlight: Luminosity and Temperature Affect Activity of Asian Nocturnal Primates in a Highly Seasonal Forest

    Get PDF
    The effect of moonlight and temperature on activity of slow lorises was previously little known and this knowledge might be useful for understanding many aspects of their behavioural ecology, and developing strategies to monitor and protect populations. In this study we aimed to determine if the activity of the pygmy loris (Nycticebus pygmaeus) is affected by ambient temperature and/or moonlight in a mixed deciduous forest. We radio-collared five females and five males in the Seima Protection Forest, Cambodia, in February to May, 2008 and January to March, 2009 and recorded their behaviour at 5 minutes intervals, totalling 2736 observations. We classified each observation as either inactive (sleeping or alert) or active behaviour (travel, feeding, grooming, or others). Moon luminosity (bright/dark) and ambient temperature were recorded for each observation. The response variable, activity, was binary (active or inactive), and a logit link function was used. Ambient temperature alone did not significantly affect mean activity. Although mean activity was significantly affected by moonlight, the interaction between moonlight and temperature was also significant: on bright nights, studied animals were increasingly more active with higher temperature; and on dark nights they were consistently active regardless of temperature. The most plausible explanation is that on bright cold nights the combined risk of being seen and attacked by predators and heat loss outweigh the benefit of active behaviours

    Microsatellite discovery in an insular amphibian (Grandisonia alternans) with comments on cross-species utility and the accuracy of locus identification from unassembled Illumina data

    Get PDF
    The Seychelles archipelago is unique among isolated oceanic islands because it features an endemic radiation of caecilian amphibians (Gymnophiona). In order to develop population genetics resources for this system, we identified microsatellite loci using unassembled Illumina MiSeq data generated from a genomic library of Grandisonia alternans, a species that occurs on multiple islands in the archipelago. Applying a recently described method (PALFINDER) we identified 8001 microsatellite loci that were potentially informative for population genetics analyses. Of these markers, we screened 60 loci using five individuals, directly sequenced several amplicons to confirm their identity, and then used eight loci to score allele sizes in 64 G. alternans individuals originating from five islands. A number of these individuals were sampled using non-lethal methods, demonstrating the efficacy of non-destructive molecular sampling in amphibian research. Although two loci satisfied our criteria as diploid, neutrally evolving loci with the statistical power to detect population structure, our success in identifying reliable loci was very low. Additionally, we discovered some issues with primer redundancy and differences between Illumina and Sanger sequences that suggest some Illumina-inferred loci are invalid. We investigated cross-species utility for eight loci and found most could be successfully amplified, sequenced and aligned across other species and genera of caecilians from the Seychelles. Thus, our study in part supported the validity of using PALFINDER with unassembled reads for microsatellite discovery within and across species, but importantly identified major limitations to applying this approach to small datasets (ca. 1 million reads) and loci with small tandem repeat sizes

    Inclusion of diverse populations in genomic research and health services: Genomix workshop report

    Get PDF
    Clinical genetic services and genomic research are rapidly developing but, historically, those with the greatest need are the least to benefit from these advances. This encompasses low-income communities, including those from ethnic minority and indigenous backgrounds. The “Genomix” workshop at the European Society of Human Genetics (ESHG) 2016 conference offered the opportunity to consider possible solutions for these disparities from the experiences of researchers and genetic healthcare practitioners working with underserved communities in the USA, UK and Australia. Evident from the workshop and corresponding literature is that a multi-faceted approach to engaging communities is essential. This needs to be complemented by redesigning healthcare systems that improves access and raises awareness of the needs of these communities. At a more strategic level, institutions involved in funding research, commissioning and redesigning genetic health services also need to be adequately represented by underserved populations with intrinsic mechanisms to disseminate good practice and monitor participation. Further, as genomic medicine is mainstreamed, educational programmes developed for clinicians should incorporate approaches to alleviate disparities in accessing genetic services and improving study participation

    Recombination-induced suppression of cell division following P1-mediated generalized transduction in Klebsiella aerogenes

    Full text link
    Klebsiella aerogenes recombinants resulting from bacteriophage P1-mediated generalized transduction failed to increase in number for approximately six generations after transduction. Nevertheless these recombinants continued to grow and became sensitive to penicillin after a transient resistance, suggesting that the cells were growing as long, non-dividing filaments. When filamentous cells were isolated from transduced cultures by gradient centrifugation, recombinants were 1000-fold more frequent among the filaments than among the normal-sized cells. The suppression of cell-division lasted for six generations whether markers near the origin ( gln, ilv ) or terminus ( his, trp ) of chromosome replication were used, despite a 50-fold difference in transduction frequencies for these markers. The suppression of cell division was a host response to recombination rather than to P1 invasion since cells lysogenized by P1 in these same experiments showed only a short (two generation) suppression of cell division. We speculate that the suppression of cell-division is an SOS response triggered by the degraded DNA not incorporated in the final recombinant. We demonstrate that both the filamentation and the transient penicillin resistance of recombinant cells can be exploited to enrich greatly for recombinants, raising transduction frequencies to as high as 10 -3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47551/1/438_2004_Article_BF00337815.pd

    The 3′ Splice Site of Influenza A Segment 7 mRNA Can Exist in Two Conformations: A Pseudoknot and a Hairpin

    Get PDF
    The 3′ splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3′ splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site

    Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression.</p> <p>Methods</p> <p>To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an <it>in vitro </it>Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis.</p> <p>Results</p> <p>Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation.</p> <p>Conclusions</p> <p>Bioinformatics analysis followed by functional genomics demonstrated that AKR1C3 overexpression promotes angiogenesis and aggressiveness of PC-3 cells. These results also suggest that AKR1C3-mediated tumor angiogenesis is regulated by estrogen and androgen metabolism with subsequent IGF-1R and Akt activation followed by VEGF expression in PCa cells.</p

    Bacterial genotyping of CNS tuberculosis in South Africa: heterogenic M. tuberculosis infection and predominance of lineage 4

    No full text
    Background: Tuberculous meningitis (TBM), the most severe extra-pulmonary manifestation of tuberculosis, is caused by the pathogen Mycobacterium tuberculosis. The M. tuberculosis complex includes seven lineages, all described to harbour a unique geographical dissemination pattern and clinical presentation. Method: In this study, we set out to determine whether a certain M. tuberculosis lineage demonstrated tropism to cause TBM in patients from Cape Town, South Africa. DNA was extracted from formalin-fixed paraffin embedded central nervous system (CNS) tissue from a unique neuro-pathological cohort of 83 TBM patients, collected between 1975 and 2012. M. tuberculosis lineages 1, 2, 3 and 4 were determined using an allele specific PCR and Sanger sequencing. Results: Of the 83 patient specimen tested, bacterial characterization could be performed on 46 patients (55%). M. tuberculosis lineage 4 was present in 26 patients (56%) and non-lineage 4 was identified in 10 cases (22%). Moreover, genomic heterogeneity was detected in the CNS specimens of 7 adults and 3 children. Conclusion: We could show that infection of the CNS is not restricted to a single M. tuberculosis lineage and that even young children with rapid progression of disease can harbour more than one M. tuberculosis lineage in the CNS
    corecore