1,600 research outputs found

    On the Use of Quantum Algebras in Rotation-Vibration Spectroscopy

    Full text link
    A two-parameter deformation of the Lie algebra u2_2 is used, in conjunction with the rotor system and the oscillator system, to generate a model for rotation-vibration spectroscopy of molecules and nuclei.Comment: 10 pages, Latex File, published in Modern Group Theoretical Methods in Physics, J. Bertrand et al. (eds.), Kluwer Academic Publishers (1995), 27-3

    Determining matrix elements and resonance widths from finite volume: the dangerous mu-terms

    Get PDF
    The standard numerical approach to determining matrix elements of local operators and width of resonances uses the finite volume dependence of energy levels and matrix elements. Finite size corrections that decay exponentially in the volume are usually neglected or taken into account using perturbation expansion in effective field theory. Using two-dimensional sine-Gordon field theory as "toy model" it is shown that some exponential finite size effects could be much larger than previously thought, potentially spoiling the determination of matrix elements in frameworks such as lattice QCD. The particular class of finite size corrections considered here are mu-terms arising from bound state poles in the scattering amplitudes. In sine-Gordon model, these can be explicitly evaluated and shown to explain the observed discrepancies to high precision. It is argued that the effects observed are not special to the two-dimensional setting, but rather depend on general field theoretic features that are common with models relevant for particle physics. It is important to understand these finite size corrections as they present a potentially dangerous source of systematic errors for the determination of matrix elements and resonance widths.Comment: 26 pages, 13 eps figures, LaTeX2e fil

    R-parity violation in SU(5)

    Get PDF
    We show that judiciously chosen R-parity violating terms in the minimal renormalizable supersymmetric SU(5) are able to correct all the phenomenologically wrong mass relations between down quarks and charged leptons. The model can accommodate neutrino masses as well. One of the most striking consequences is a large mixing between the electron and the Higgsino. We show that this can still be in accord with data in some regions of the parameter space and possibly falsified in future experiments.Comment: 30 pages, 1 figure. Revised version. To appear in JHE

    Computer simulation of breast reduction surgery

    Get PDF
    Background: Plastic surgery of the breast, particularly breast reduction, is considered difficult. It can become a challenge for a less experienced surgeon to understand exactly what to do when facing a particular type of breast and how to avoid unsatisfactory results. Methods: The goal of this study was to create a computer model of the breast that provides a basis for the simulation of breast surgery, particularly breast reduction. The reconstruction of elastic parameters is based on observations of the breast with the patient in different positions. Results: It is shown that several measurements with the patient in different positions allow one to choose the parameters of the model and determine the elastic coefficients of the breast and the skin. The geometry of the breast before and after surgery is simulated. A qualitative study of the incision parameters’ influence on the final geometry of the breast is presented. Conclusion: The developed methodology and software allow one to estimate the form of the breast after the surgery by knowing its form before surgery and taking into consideration the parameters of incision applied by the surgeon at the time of surgery. The described approach can be used for the qualitative and quantitative study of breast reduction surgery with a satisfactory result. Level of Evidence: V (This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266.

    Neutrino Mass and μe+γ\mu \rightarrow e + \gamma from a Mini-Seesaw

    Full text link
    The recently proposed "mini-seesaw mechanism" combines naturally suppressed Dirac and Majorana masses to achieve light Standard Model neutrinos via a low-scale seesaw. A key feature of this approach is the presence of multiple light (order GeV) sterile-neutrinos that mix with the Standard Model. In this work we study the bounds on these light sterile-neutrinos from processes like \mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We show that viable parameter space exists and that, interestingly, key observables can lie just below current experimental sensitivities. In particular, a motivated region of parameter space predicts a value of BR(\mu ---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to presentation, results unchanged

    Spontaneous R-Parity Violation, A4A_4 Flavor Symmetry and Tribimaximal Mixing

    Full text link
    We explore the possibility of spontaneous R parity violation in the context of A4A_4 flavor symmetry. Our model contains SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet matter chiral superfields which are arranged as triplet of A4A_4 and as well as few additional Higgs chiral superfields which are singlet under MSSM gauge group and belong to triplet and singlet representation under the A4A_4 flavor symmetry. R parity is broken spontaneously by the vacuum expectation values of the different sneutrino fields and hence we have neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in our model, in addition to the standard model neutrino- gauge singlet neutrino, gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we have an extended neutral fermion mass matrix. We explore the low energy neutrino mass matrix for our model and point out that with some specific constraints between the sneutrino vacuum expectation values as well as the MSSM gauge singlet Higgs vacuum expectation values, the low energy neutrino mass matrix will lead to a tribimaximal mixing matrix. We also analyze the potential minimization for our model and show that one can realize a higher vacuum expectation value of the SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet sneutrino fields even when the other sneutrino vacuum expectation values are extremely small or even zero.Comment: 18 page

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004
    corecore