58 research outputs found

    Emerging pathogenic links between microbiota and the gut-lung axis

    Full text link
    © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. The microbiota is vital for the development of the immune system and homeostasis. Changes in microbial composition and function, termed dysbiosis, in the respiratory tract and the gut have recently been linked to alterations in immune responses and to disease development in the lungs. In this Opinion article, we review the microbial species that are usually found in healthy gastrointestinal and respiratory tracts, their dysbiosis in disease and interactions with the gut-lung axis. Although the gut-lung axis is only beginning to be understood, emerging evidence indicates that there is potential for manipulation of the gut microbiota in the treatment of lung diseases

    Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease.

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is the third commonest cause of death globally, and manifests as a progressive inflammatory lung disease with no curative treatment. The lung microbiome contributes to COPD progression, but the function of the gut microbiome remains unclear. Here we examine the faecal microbiome and metabolome of COPD patients and healthy controls, finding 146 bacterial species differing between the two groups. Several species, including Streptococcus sp000187445, Streptococcus vestibularis and multiple members of the family Lachnospiraceae, also correlate with reduced lung function. Untargeted metabolomics identifies a COPD signature comprising 46% lipid, 20% xenobiotic and 20% amino acid related metabolites. Furthermore, we describe a disease-associated network connecting Streptococcus parasanguinis_B with COPD-associated metabolites, including N-acetylglutamate and its analogue N-carbamoylglutamate. While correlative, our results suggest that the faecal microbiome and metabolome of COPD patients are distinct from those of healthy individuals, and may thus aid in the search for biomarkers for COPD

    Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction

    Full text link
    Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract (GIT). Cigarette smoke (CS) exposure and chronic obstructive pulmonary disease (COPD) are risk factors for CD, although the mechanisms involved are poorly understood. We employed a mouse model of CS-induced experimental COPD and clinical studies to examine these mechanisms. Concurrent with the development of pulmonary pathology and impaired gas exchange, CS-exposed mice developed CD-associated pathology in the colon and ileum, including gut mucosal tissue hypoxia, HIF-2 stabilization, inflammation, increased microvasculature, epithelial cell turnover, and decreased intestinal barrier function. Subsequent smoking cessation reduced GIT pathology, particularly in the ileum. Dimethyloxaloylglycine, a pan-prolyl hydroxylase inhibitor, ameliorated CS-induced GIT pathology independently of pulmonary pathology. Prior smoke exposure exacerbated intestinal pathology in 2,4,6-trinitrobenzenesulfonic acid-induced (TNBS-induced) colitis. Circulating vascular endothelial growth factor, a marker of systemic hypoxia, correlated with CS exposure and CD in mice and humans. Increased mucosal vascularisation was evident in ileum biopsies from CD patients who smoke compared with nonsmokers, supporting our preclinical data. We provide strong evidence that chronic CS exposure and, for the first time to our knowledge, associated impaired gas exchange cause systemic and intestinal ischemia, driving angiogenesis and GIT epithelial barrier dysfunction, resulting in increased risk and severity of CD

    Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.

    Get PDF
    Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studie

    Unravelling the genome-wide contributions of specific 2-alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa

    Get PDF
    The pqs quorum sensing (QS) system is crucial for Pseudomonas aeruginosa virulence both in vitro and in animal models of infection and is considered an ideal target for the development of anti-virulence agents. However, the precise role played by each individual component of this complex QS circuit in the control of virulence remains to be elucidated. Key components of the pqs QS system are 2-heptyl-4-hydroxyquinoline (HHQ), 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), the transcriptional regulator PqsR and the PQS-effector element PqsE. To define the individual contribution of each of these components to QS-mediated regulation, transcriptomic analyses were performed and validated on engineered P. aeruginosa strains in which the biosynthesis of 2-alkyl 4-quinolones (AQs) and expression of pqsE and pqsR have been uncoupled, facilitating the identification of the genes controlled by individual pqs system components. The results obtained demonstrate that i) the PQS biosynthetic precursor HHQ triggers a PqsR-dependent positive feedback loop that leads to the increased expression of only the pqsABCDE operon, ii) PqsE is involved in the regulation of diverse genes coding for key virulence determinants and biofilm development, iii) PQS promotes AQ biosynthesis, the expression of genes involved in the iron-starvation response and virulence factor production via PqsR-dependent and PqsR-independent pathways, and iv) HQNO does not influence transcription and hence does not function as a QS signal molecule. Overall this work has facilitated identification of the specific regulons controlled by individual pqs system components and uncovered the ability of PQS to contribute to gene regulation independent of both its ability to activate PqsR and to induce the iron-starvation response

    Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms

    Get PDF
    Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated.The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) (http://www.fct.pt/), under the scope of the strategic funding of UID/B10/04469/2013 and COMPETE 2020 (POCI-01-0145-FEDER-006684). This study was also supported by FCT and the European Community fund FEDER, through Program COMPETE, and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 -Programa Operacional Regional do Norte. This work was also partially funded by the [14V105] Contract-Programme from the University of Vigo (https://mw.uvigo.gal/ uvigo_en/) and the Agrupamento INBIOMED (http://inbiomed.webs.uvigaes/) from DXPCTSUG-FEDER unha maneira de facer Europa (2012/273) and co-financed by the European Regional Development Fund (http://ec.europleuiregionaL policy/EN/fundingierdf/) under the Operational Programme Innovative Economy (WNP-POIG.01.04.00-22-052/11).). Lipopharm.pl (http://www.lipopharm.p1/) provided support in the form of salaries for authors DG and WK. The authors also acknowledge the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) (https://www.escmid.org/) for the Research Grant 2014 to Anglia Lourenco, and FCT for the PhD Grant of Paula Jorge (grant number SFRH/BD/88192/2012). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Brief psychological therapies for anxiety and depression in primary care: meta-analysis and meta-regression

    Get PDF
    Psychological therapies provided in primary care are usually briefer than in secondary care. There has been no recent comprehensive review comparing their effectiveness for common mental health problems. We aimed to compare the effectiveness of different types of brief psychological therapy administered within primary care across and between anxiety, depressive and mixed disorders

    JTD special edition 'Hot Topics in COPD'-The microbiome in COPD.

    Full text link
    The pathogenesis of chronic obstructive pulmonary disease (COPD) and its exacerbations, are intricately linked to colonisation and infection with bacteria and other microbes. Despite their undeniable importance, we have a poor understanding of the complex relationships between COPD phenotypes, physiology, cellular and molecular biology and the roles of colonising microbe or infecting pathogens. The management algorithms for the care of patients with COPD that include microbial influences, have almost exclusively been developed using microbial methods that were entirely dependent on the ability to grow bacteria on suitable media. The shortcomings of this approach are becoming clear now that it is possible to completely and accurately define the microbial ecology of ecosystems using genomic methods, which do not rely on the ability to cultivate the organisms present. Whilst our appreciation of the relationships between some bacterial ecosystems and the organ in which they reside in humans is now relatively advanced, this is not true for lung. This perspective serves to highlight the growing importance of including an accurate description of bacterial ecology in any attempt to decipher the pathobiology of COPD. While this field is in its infancy, there is significant potential to gain new insights which will translate into more rational and effective treatment algorithms for patients with COPD

    Microbiomes in respiratory health and disease: An Asia-Pacific perspective

    Full text link
    © 2017 Asian Pacific Society of Respirology There is currently enormous interest in studying the role of the microbiome in health and disease. Microbiome's role is increasingly being applied to respiratory diseases, in particular COPD, asthma, cystic fibrosis and bronchiectasis. The changes in respiratory microbiomes that occur in these diseases and how they are modified by environmental challenges such as cigarette smoke, air pollution and infection are being elucidated. There is also emerging evidence that gut microbiomes play a role in lung diseases through the modulation of systemic immune responses and can be modified by diet and antibiotic treatment. There are issues that are particular to the Asia-Pacific region involving diet and prevalence of specific respiratory diseases. Each of these issues is further complicated by the effects of ageing. The challenges now are to elucidate the cause and effect relationships between changes in microbiomes and respiratory diseases and how to translate these into new treatments and clinical care. Here we review the current understanding and progression in these areas
    corecore