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Disease-associated gut microbiome and
metabolome changes in patients with chronic
obstructive pulmonary disease
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Chronic obstructive pulmonary disease (COPD) is the third commonest cause of death

globally, and manifests as a progressive inflammatory lung disease with no curative treat-

ment. The lung microbiome contributes to COPD progression, but the function of the gut

microbiome remains unclear. Here we examine the faecal microbiome and metabolome of

COPD patients and healthy controls, finding 146 bacterial species differing between the two

groups. Several species, including Streptococcus sp000187445, Streptococcus vestibularis and

multiple members of the family Lachnospiraceae, also correlate with reduced lung function.

Untargeted metabolomics identifies a COPD signature comprising 46% lipid, 20% xenobiotic

and 20% amino acid related metabolites. Furthermore, we describe a disease-associated

network connecting Streptococcus parasanguinis_B with COPD-associated metabolites,

including N-acetylglutamate and its analogue N-carbamoylglutamate. While correlative, our

results suggest that the faecal microbiome and metabolome of COPD patients are distinct

from those of healthy individuals, and may thus aid in the search for biomarkers for COPD.
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Chronic obstructive pulmonary disease (COPD) is a het-
erogeneous disease with pulmonary pathologies, including
chronic bronchitis, airway remodelling and emphysema

that impair lung function. It has numerous systemic comorbid-
ities such as cardiovascular disease, colitis and osteoporosis1,2. It
is the third leading cause of death globally3, with the primary risk
factor being the inhalation of cigarette smoke, air pollution or
other noxious particles4,5. However, reportedly only 20–25% of
smokers develop COPD6, and while some genetic risk factors
have been described4, other factors such as inflammatory and
immune responses are important in pathogenesis7.

Current approaches to COPD therapy are limited and aim to
manage symptoms and reduce exacerbations. High-dose-inhaled
corticosteroids are widely employed, but their efficacy is limited
to reducing exacerbation frequency or, combined with broncho-
dilators, improving COPD symptoms8. Many patients do not
respond to steroid treatment7, and these therapies fail to modify
the factors that initiate and drive disease progression, do not
reverse tissue lesions or improve mortality and predispose to
serious respiratory infection and pneumonia8,9.

COPD is punctuated by exacerbations that worsen symptoms.
Viruses and bacteria in the respiratory tract are associated with
disease exacerbation; however, the heterogeneity of the disease
and difficulties in sampling the lung make the exact nature of the
relationship difficult to interpret10,11. Recently, the respiratory
tract microbiome has emerged as a contributing factor in COPD
progression outside of exacerbations with substantial overlap in
identified viruses and bacteria during stable and exacerbated
disease12. Comparison of sputum and bronchoalveolar lavage
fluid (BALF) between stable COPD patients and healthy controls
identified an increased abundance of Moraxella, Streptococcus,
Veillonella, Eubacterium and Prevotella in disease13,14. However,
other studies of BALF reported increased Prevotella enoeca but no
difference in Streptococcus15. Comparisons of lung explants
identified increased Proteobacteria and reduced Firmicutes and
Bacteroidetes with decreased abundance of Streptococcus, Hae-
mophilus influenza and Prevotella spp. in COPD16. Reduced
bacterial diversity occurs in stable COPD patient sputum com-
pared to healthy controls13; however, both increased and con-
sistent diversity has been reported in BALF14,15. These studies
suggest that the lung microbiome does not reproducibly change
in COPD, which may be related to its transient nature produced
by the balancing forces of immigration and elimination that
typically impede long-term colonisation17,18.

The co-morbidity of colitis suggests that the ‘gut-lung axis’may
be important in COPD pathogenesis19. Thus, we hypothesised
that changes in the permanently colonised gut environment may
contribute to pathogenesis and be a more reliable indicator of
COPD. The concept of the gut–lung axis, describing the common
mucosal immune system of the lung and gastrointestinal tract,
implicates roles for the gut microbiome in regulating inflamma-
tion in acute and chronic respiratory disease including
COPD18,19. Several studies implicate disturbances in the abun-
dance or metabolism of gut bacteria in asthma and allergic airway
disease20–22. In addition, the gut microbiome regulates host
immune responses to respiratory infection19,23, and may, there-
fore, contribute to exacerbation frequency in COPD. COPD
patients have increased incidence of gastrointestinal disturbances
such as ulcerative colitis and Crohn’s disease and vice versa24,25,
indicating potential roles for the gut microbiome in the disease.
However, the gastrointestinal microbiome of COPD patients has
not been assessed26,27.

Here we compare the composition and functional potential of
the gut microbiome in COPD patients with those of healthy
controls, using untargeted faecal metagenomics and metabo-
lomics. We describe an altered gut microbiome and metabolome

associated with the disease. Several strepotococci and members of
the family Lachnospiraceae discriminate between COPD patients
and healthy controls in addition to correlating with impaired lung
function. The metabolomic analysis identifies a shortlist of
metabolites that may be potential biomarkers for validation in
future studies. These findings support the gut microbiome and
metabolome as being altered in association with COPD and
highlight the need for further exploration of this environment to
uncover whether it plays an active role in disease progression via
the gut–lung axis.

Results
Participant profiles. We separately characterised the gut micro-
biome and metabolic profiles in COPD by analysing stool from
individuals satisfying the global initiative for chronic obstructive
lung disease (GOLD) criteria and healthy controls. A total of 28
COPD patients (54% female) and 29 healthy controls (66%
female) were assessed, all during periods of stable disease (Sup-
plementary Data 1). Information on GOLD status, dietary habits,
smoking status and medication history was collected, along with
spirometry and blood cell counts (Supplementary Data 1–5).
COPD patients include four classified as GOLD I, 11 as GOLD II,
eight as GOLD III and 11 as GOLD IV. The COPD cohort was
older than healthy controls (mean age of 67 vs. 60, p= 0.012) and
had a significantly higher proportion of past smokers (p= 0.005).
Daily fibre intake was lower in COPD patients, while pulse rate,
total white blood cell, neutrophil, monocyte and eosinophil
counts were significantly higher. No significant differences were
observed in body mass index (BMI), systolic or diastolic blood
pressure, the proportion of current smokers, daily energy, car-
bohydrate, fat, protein, sugar or starch intake, haemoglobin, total
red blood cell, platelet, lymphocyte or basophil counts between
the groups (Supplementary Data 1).

Faecal microbiome taxonomic indicators of COPD using 16S
rRNA gene sequencing. To compare the gut bacterial commu-
nity composition between COPD patients and healthy indivi-
duals, we initially undertook 16S rRNA gene sequencing. In
total, 4285 sequence variants were identified across all 57 faecal
samples. After filtering for sequence variants present in at least
two samples with a minimum relative abundance of 0.05%,
977 sequence variants were retained for community analysis. A
significant difference in overall community composition
was observed between COPD and healthy gut microbiomes
(Fig. 1a, p < 0.0001 PERMANOVA of Bray–Curtis distances),
without a significantly altered level of diversity (pShannon= 0.329,
pSimpsonInverse= 0.291). COPD status explained 4% of the
between-sample variability indicating substantial inter-individual
differences that remained largely uncaptured by the addition of
further demographic variables (Supplementary Data 6). Sequence
variants contributing to the distinction between the groups were
identified using multivariate sparse partial least-squares dis-
criminant analysis (sPLS-DA, Fig. 1b–d, Supplementary Data 7).
Genera increased in abundance in COPD include Streptococcus
and Rothia, both common oral bacteria as well as occurring in the
gut28, Romboutsia and Intestinibacter from the family Peptos-
treptococcaceae and Escherichia. Genera decreased in COPD
include Bacteroides, Roseburia and Lachnospira from the family
Lachnospiraceae and several unnamed genera of Ruminococcaceae.

Faecal microbiome taxonomic indicators of COPD using
metagenomics. Having identified distinct COPD-associated fae-
cal taxa using 16S rRNA gene sequencing, we sought to increase
the resolution of these findings via metagenomic sequencing of
the same samples. We recovered 437 metagenome-assembled
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Ruminococcaceae; UCG−003; eaf7ae14055b033f41391df1895bf101
Acidaminococcaceae; Phascolarctobacterium; 9c24ae9bb6cf6e5da1482706070a412c
Lachnospiraceae; Lachnospira; 3e427b8b661b5991ecdd3088bb284e55
Bacteroidaceae; Bacteroides; af02659f726560e4a8061baa9bafd0a2
Ruminococcaceae; UCG−005; e4ab6f76deade2f7e045f672e44dc8bd
Ruminococcaceae; NK4A214 group; 91b8e31532f61fa7cd8dc698fea7db1
Lachnospiraceae; [Eubacterium] eligens group; b409c6d40f705d51007c09065fc52ec6
Ruminococcaceae; 151239f2954fd01ab6da7c23f9653629
Christensenellaceae; Christensenellaceae R−7 group; 0cf6a037300dcdd808c0df5701f5587f
Lachnospiraceae; Lachnoclostridium; f9f866048b67e89581458dfb1de2457d
Lachnospiraceae; 0a62d3f020de1b7c160cf57b624b628e
Synergistaceae; Cloacibacillus; 4153a846e93fcd9474e19a21f0d90500
Lachnospiraceae; 1e8b9381eaf7927036781243970760f3
FirLachnospiraceae; [Eubacterium] xylanophilum group; 1ba1ebbb7da9918335ef52c875aec53f
Bacteroidaceae; Bacteroides; 11139544a2b85eacdb525cea7c2caf3a
Lachnospiraceae; Marvinbryantia; c071ecaafa203d59f6327d361e167bf4
Ruminococcaceae; Ruminococcaceae UCG−014; 8a50b1ddf55600c3b1585bc5b65fde74
Bacteroidaceae; Bacteroides; 6360c574f4d787a1360e1de1104c5123
Lachnospiraceae; Roseburia; b30bb9bc83b6e7e598255cc95973dcd4
Clostridiaceae 1; Clostridium sensu stricto 1; 8b4a1da7442d103bac927d1ce0781e59
Peptostreptococcaceae; Intestinibacter; 35f2a10479b3fb0d6c701f80c83d998d
Streptococcaceae; Streptococcus; Streptococcus mutans; d41073c6e011b55c0a90d4f12ab22d3b
Peptostreptococcaceae; Romboutsia; 526a6a1bf6080b5cd2102d4892231460
Actinomycetaceae; Actinomyces; b59f842a087617c7cec2c79690dfed0b
Ruminococcaceae; 62b76963e8f620ac6cad5cbc42f97c9f
Peptostreptococcaceae; Romboutsia; f77434377f4af34f15d84252920ec122
Micrococcaceae; Rothia; aa46cb9fb30bcadedeed18629f585659
Enterobacteriaceae; Escherichia−Shigella; ddc4debbcf2f4f94f77de98243a6e2d3
Peptostreptococcaceae; Romboutsia; 8b86d0245fe5716eb303a46c9d10a4b0
Ruminococcaceae; e4b62ed7117e2ee682b3a3723ea0c2ce
Ruminococcaceae; DTU089; fde69e55bbd05719012f99b275b556a2
Lachnospiraceae; Lachnoclostridium; f8fa3cf231a92ada03642dec9ef071c1
Ruminococcaceae; Ruminiclostridium 5; 5eff7ef7ad68f1f36e072816415ca439
Christensenellaceae; Christensenellaceae R−7 group; fa73e3189bcaef365aa0e08831a28e25
Family XIII; AD3011 group; 6e58d361f19f169d10b112fbdeb48fc0
Streptococcaceae; Streptococcus; bfe69754325dc5dacd606216a990d606
Ruminococcaceae; UBA1819; uc34f0a17a3aa289ee978d0557bb6a0b4
Lachnospiraceae; b6b6706232cd5f48a9d335bf738bc07d
Rikenellaceae; Alistipes; 0935211f20b2a01c376e96b16ffd9a67
Family XIII; AD3011 group; 1c974d1c24fbaaee6d4ea5fcade70e6f
Eggerthellaceae; 3c66c8dbb5f647da642ad3f8b421b315
Lachnospiraceae; d3f11151fd34335a81dd3c77f12f1467
Family XIII; bcead24e4e4599f0bb798ba9d25be81d
Lachnospiraceae; Blautia; 540b157ec4a927059d243309656634b9
Lachnospiraceae; 95e0459b3d40f37ab68209c9256bc853
Lachnospiraceae; Blautia; 4ea60a12bc8af266cf412b1a6a459766
Ruminococcaceae; Ruminiclostridium 5; 7033a395fdef3a1e16959bbde312f0fb
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Fig. 1 Faecal microbiota of COPD patients (n= 28) can be distinguished from that of healthy individuals (n= 29) using 16S rRNA gene amplicon
sequencing. a Principal component (PC) analysis undertaken at the sequence variant level using read counts transformed using log-cumulative-sum
scaling. b Multivariate sparse partial least-squares discriminant analysis (sPLS-DA) of read counts transformed using log-cumulative-sum scaling at the
sequence variant level. c Sequence variants contributing to separation along with component 1 of sPLS-DA from b. Bar length indicates loading coefficient
weight of selected genomes, ranked by importance, bottom to top; bar colour indicates the group in which the sequence variant has the highest median
abundance, red= COPD, blue= healthy. d Heatmap of read counts transformed using log-cumulative-sum scaling of discriminatory sequence variants
identified along with component 1 of sPLS-DA from (b).
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genomes (MAGs) from 57 individuals, each with an estimated
completeness >80% and a maximum of 7% contamination.
Overall community composition was analysed using these MAGs
in combination with a set of publicly available reference genomes.
Consistent with the 16S rRNA gene sequencing analysis, COPD
and healthy samples could be distinguished (Supplementary
Fig. 1a, p < 0.0001, PERMANOVA of Bray–Curtis distances)
despite considerable variation in community composition
between individuals (Supplementary Fig. 1b) and no significant
differences in diversity between the groups (pShannon= 0.174,
pSimpsonInverse= 0.345). COPD status explained 6% of the
between-sample variability (Supplementary Data 8). At the bac-
terial family level, Bifidobacteriaceae, Eubacteriaceae, Lactoba-
cillaceae, Micrococcaceae, Streptococcaceae and Veillonellaceae
were enriched in COPD. Depleted families included Desulfovi-
brionaceae, Gastranaerophilaceae and Selenomonadaceae along
with several uncharacterised families of Bacilli and Clostridia
(Supplementary Data 9). Enriched and depleted families were
highly variable between individuals (Supplementary Data 9 and
Supplementary Fig. 1b), as is frequently observed with human
datasets29.

To identify genera and species contributing to the distinction
between COPD and healthy controls, we employed both
univariate and multivariate approaches designed to identify
significantly different species (DESeq230) and the largest source
of variation between the two groups (mixOmics31), respectively
(Fig. 2a–c). Over 200 genomes belonging to 107 genera and
146 species were identified as either significantly enriched or
depleted between COPD and healthy samples using DESeq2
although the differences in average relative abundance for most
species were small (Supplementary Data 10). Some species were
present at a substantially higher prevalence in COPD patients
including Rothia and Streptococcus spp., Romboutsia timonensis
and Intestinibacter bartlettii, consistent with 16S rRNA gene
sequencing, while others were more prevalent in healthy controls
(e.g. Coprobacter fastidiosus and Coprobacter secundus, Rikenel-
laceae genus RC9 and Christensenellales family CAG-74).
Streptococcus species were identified as key differentiators
between COPD and healthy samples using sPLS-DA analysis
within mixOmics, as were multiple members of the family
Lachnospiraceae (Fig. 2b, c).

Microbiome changes indicate disease status. To test whether
patient characteristics contributed to the microbiome signature
separating COPD from healthy controls, we repeated the uni-
variate analysis of the metagenomic data, including age, BMI and
sex within a multifactorial design in DESeq2, categorising BMI
according to WHO standards and age in 10-year windows (≤54,
55–64, 65–74 and ≥75). Streptococcus vestibularis, and two
unnamed Streptococcus species (sp001556435, sp000187445)
remained significantly enriched in COPD samples using this
model, and RC9 genomes remained enriched in healthy samples
(Supplementary Data 11). We compared medication-related
subgroups within the COPD samples and found no significant
difference in microbiome composition between those taking
inhaled steroids, beta-agonists or anticholinergics and those not
taking these drugs (p= 0.286, 0.208 and 0.220, respectively,
PERMANOVA of Bray–Curtis distances). There was also no
significant difference between current smoking and non-smoking
COPD patients (p= 0.224, PERMANOVA of Bray–Curtis dis-
tances) or between stable and frequent exacerbators (p= 0.367,
PERMANOVA of Bray–Curtis distances). Correlation analysis
revealed a subset of taxa that were significantly associated with
lung function. These included negative correlations between
Streptococcus sp000187445 and S. vestibularis and forced

expiratory volume in 1 s (FEV1) and most COPD-associated
members of the family Lachnospiraceae with predicted per cent-
forced vital capacity (FVC) and FEV1 (Fig. 3). Positive correla-
tions were observed between Desulfovibrio piger_A and CAG-302
sp001916775 and lung function. Overall, these data support an
association between the faecal microbiome and COPD status,
identifying species associated with both health and disease; there
are some associations with disease severity, as indicated by blood
neutrophils, lung function and historical frequency of exacerba-
tion episodes.

Functional potential indicators of the COPD faecal micro-
biome. Metagenomic reads were annotated with predicted func-
tion based on alignment against available databases (Pfam,
TIGRFAM, KEGG and CAZy), for a gene-centric analysis of
unassembled metagenomes. There was no significant difference in
overall predicted functional capacity between COPD and healthy
samples in a global comparison of all annotated domains (Sup-
plementary Fig. 2). However, pairwise comparison at the indivi-
dual domain level revealed several annotated functions that were
distinct between the two groups. Glucosyltransferase enzymes
were enriched in COPD based on enrichment of domains in each
database: PF02324 (Pfam), TIGR04035 (TIGRFAM), K00689
(KEGG) and GH70 (CAZy) (Supplementary Data 12–15). These
enzymes synthesise high-molecular-weight extracellular glucan
polymers such as α-D-glucans from sucrose that adsorb onto the
bacterial surface and contribute to the adherence of Streptococcus
and other species32. LPXTG-anchored adhesion domains
(K12472 and TIGR04225), a cell-surface-anchoring motif found
in Gram-positive bacteria, were also enriched in COPD samples.
Most of the reads annotated as containing the enriched domains
aligned to the enriched Streptococcus populations (Supplementary
Data 16–19). Glucosyltransferase-annotated reads aligned to S.
salivarius and Streptococcus sp001556435 gtfC genes, of which
there are multiple copies within the enriched reference genomes.
LPXTG-anchored adhesion domains were identified within a
YSIRK-type signal peptide-containing protein in S. salivarius, S.
parasanguinis_B and other Streptococcus spp. (Supplementary
Data 20 and 21). The protein also carries multiple CshA-type
fibril repeats used by Streptococcus gordonii to bind fibronectin33.
Fibronectin is expressed by epithelial cells and is upregulated in
murine models of colitis and in association with inflammatory
bowel disease34,35. Increased fibronectin is observed in the small
airways of COPD patients36 and in experimental COPD37;
however, no similar analysis is available for the gut. The capacity
for adhesion to host tissue may therefore contribute to the
enrichment of streptococci in the COPD gut microbiome.

We then also undertook a targeted genome-centric analysis
comparing the encoded functions within genomes identified as
significantly different between COPD and healthy samples in
either multivariate or covariate-adjusted univariate analyses (35
enriched in, and 25 depleted in COPD relative to healthy
controls, Fig. 2b and Supplementary Data 11). The majority of the
predicted discriminatory functions were encoded in genomes
enriched in COPD (Supplementary Data 22). These included
Streptococcus-specific features such as the accessory secretory
proteins Asp1–3, forming part of the accessory SecA2/
Y2 secretion system that exports glycosylated serine-rich repeat
glycoproteins involved in adhesion38. Also specific to Strepto-
coccus are the typical streptococcal peptidoglycan biosynthesis
enzymes (penicillin-binding proteins, murN) and an ABC-type
manganese uptake system involved in streptococcal virulence39.
Elements of multiple amino acid biosynthesis pathways were
also enriched among COPD-associated genomes, as were fatty
acid biosynthesis initiation and elongation enzymes. Genomes
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associated with healthy samples from the uncharacterised families
CAG-138 (order Christensenellales), CAG-239 (order RF32), CAG-
1000 (order RF39), CAG-302 (order RF39) and CAG-508 (order
TANB77) lack many of these functions based on KEGG module
completeness (Supplementary Data 23), as recently observed
amongst uncultivated members of the gut microbiome40. They
may therefore represent gut symbionts reliant on host metabolites
making them potentially more sensitive to environmental
perturbation.

Functional indicators of the COPD faecal metabolome. To
assess metabolic expression in the COPD gut, we undertook
untargeted metabolomic profiling of paired faecal samples
identifying 934 compounds likely arising from both the micro-
biome and the host, and some from ingested compounds

(Supplementary Data 24). Principal component analysis (PCA,
Supplementary Fig. 3a) revealed significant but incomplete
separation of COPD and healthy samples (p= 0.003, PERMA-
NOVA of Euclidean distances). As with the metagenome, there
was no significant difference in the metabolome of COPD
patients between those taking steroids, beta-agonists or antic-
holinergics and those not (p= 0.299, 0.724 and 0.596, respec-
tively, PERMANOVA of Euclidean distances), between current
smokers and non-smokers (p= 0.115), or stable and frequent
exacerbators (p= 0.501).

Integration of metagenomes and metabolomes. We used the
mixOmics platform to both investigate the metabolites con-
tributing to the distinction between COPD and healthy samples
and to integrate the metagenomic and metabolomic data into a
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Fig. 2 Metagenomic sequencing-based exploration of COPD-associated (n= 28) faecal microbiomes supports distinction from those of healthy
individuals (n= 29). aMultivariate sparse partial least-squares discriminant analysis (sPLS-DA) of read-mapping-based relative abundance at the genome
level of the faecal microbiome, filtered for genomes with minimum 0.05% relative abundance in at least one sample. b Genomes contributing to separation
along with component 1 of sPLS-DA from (a). Bar length indicates loading coefficient weight of selected genomes, ranked by importance, bottom to top; bar
colour indicates the group in which the genome has the highest median abundance, red= COPD, blue= healthy. c Heatmap of discriminatory genomes
along component 1 of sPLS-DA from (a). Data are centred with log-ratio-transformed relative abundance.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19701-0 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5886 | https://doi.org/10.1038/s41467-020-19701-0 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


multi-omic signature (Fig. 4 and Supplementary Fig. 3b). Analysis
of species confirmed enrichment of S. parasanguinis_B and S.
salivarius in association with COPD (Fig. 4a, b). Within the
metabolome, COPD samples were largely defined by depletion of
metabolites, with 76% of the identified signature being metabo-
lites present at higher abundance in healthy samples (Fig. 4c, d
and Supplementary Data 25). Of the top 50 indicator metabolites
separating COPD from healthy samples, 46% were from the lipid
(n= 23), 20% amino acid (n= 10) and 20% xenobiotic (n= 10)
classes (Supplementary Data 25), indicating that lipid metabolism
may be altered in COPD. Sixteen of these compounds, all from
the lipid, amino acid or xenobiotic classes, were identified as
significantly differential between COPD and healthy samples
following adjustment for covariates (age, sex and BMI) using a
linear model (Supplementary Data 25). Correlation analysis
between the 44 bacterial genomes identified above (Supplemen-
tary Data 11) and these 16 metabolites revealed 253 significant
associations, many of which involved species enriched in COPD
(Fig. 5).

Lipid involvement in the COPD faecal metabolome. Within the
lipid class, all six metabolites identified as significant in the linear
model were enriched in healthy samples (Supplementary
Data 25). Four of these were the dicarboxylic acids suberate (C8),
sebacate (C10), undecanedioate (C11) and dodecanedioate (C12)
that may originate from the diet or be produced endogenously via
the ω-oxidation of fatty acids41,42. Each of these four lipid
metabolites was negatively associated with the majority of species
enriched with COPD, suggesting possible ‘guilt-by-association’
related to the COPD versus healthy divide (Fig. 5). In contrast,

only a subset of species enriched in healthy samples was positively
associated with the four dicarboxylates. Bacterial catabolism of
dicarboxylic acids has been described in vitro43; therefore, we
looked for the described enzymes within the genomes of the
enriched and depleted species (Supplementary Data 11). While
some species are potentially capable of degrading dicarboxylic
acids, the pattern of enzyme presence did not match the observed
associations with species abundance, either within the healthy or
COPD samples (Fig. 5, Supplementary Data 26), supporting a
human-derived component of the phenotype. Since the use of
statins can influence the rate of fatty acid oxidation44, we added
statin use to the linear model described above. Dicarboxylic acids
were no longer significantly depleted in COPD samples following
this adjustment (Supplementary Data 25), indicating that statin
medication may be driving this phenotype. Inclusion of addi-
tional medication (proton-pump inhibitors, selective serotonin-
reuptake inhibitors, beta-blockers, angiotensin-converting
enzyme inhibitors and angiotensin II receptor antagonists) in
an extended linear model reduced the number of significant
metabolites to five: amino acid metabolites N-acetylglutamate and
N-acetylproline and the xenobiotic metabolites cotinine, asmol
and N-carbamoylglutamate, again implicating medication use as
impacting the levels of other metabolites.

Amino acid involvement in the COPD faecal metabolome.
Without adjustment for medication, two amino acid metabolites
were enriched and three were depleted in COPD. The first enriched
metabolite, N-acetylcadaverine, has previously been associated with
Crohn’s disease45. The precursor of N-acetylcadaverine, cadaverine,
is formed during lysine degradation; however, cadaverine levels

*

*

* * *

*

*

*

*

*
*

*
*

*

*

*
*

*

* *

*
*

*
*

*
*

*
*

*
*

*

*

*

*

*

*

*

**

**
**
**
**

**
**
**
**

**
**
**
**

**
**
**
**

**
**

**
**
**
**

**
**

**

**
**
**
**

**
**

**
**

**
**

** **
**

FVC
FVC % predict

FEV1
FEV1 % predict
FEV/FVC ratio

FEV/FVC ratio % predict
Hemoglobin

WBC
RBC
MCV
MCH
RDW

Platelets
Neutrophils

Lymphocytes
Monocytes
Eosinophils

Basophils

Enriched in COPD

Enriched in healthy

P  < 0.05 (BH adj.)

−0.7

−0.56

−0.42

−0.28

−0.14

0

0.14

0.28

0.42

0.56

0.7
Spearman’s �

P  < 0.01 (BH adj.)**
*

Lactobacillales; Streptococcaceae
Lachnospirales; Lachnospiraceae
Oscillospirales; Acutalibacteraceae
Oscillospirales; Oscillospiraceae
Enterobacterales; Enterobacteriaceae
Verrucomicrobiales; Akkermansiaceae
Bacteroidales; Bacteroidaceae
Bacteroidales; UBA932
Desulfovibrionales; Desulfovibrionaceae
RF39; CAG-1000
RF39; CAG-302
Christensenellales; CAG-138
Christensenellales; CAG-74
Oscillospirales; Ruminococcaceae
TANB77; CAG-508
RF32; CAG-239

Taxonomy: Order; Family

G
C

F
_0

02
07

38
35

.1
 S

tr
ep

to
co

cc
u

s 
sp

00
15

56
43

5
G

C
A

_0
02

07
35

15
.1

 S
tr

ep
to

co
cc

u
s 

sp
00

15
56

43
5

G
C

F
_0

01
54

68
35

.1
 S

tr
ep

to
co

cc
u

s 
sp

00
01

87
44

5
G

C
F

_0
00

18
74

45
.1

 S
tr

ep
to

co
cc

u
s  

sp
00

01
87

44
5

G
C

F
_0

00
18

00
75

.1
 S

tr
ep

to
co

cc
u

s  
ve

st
ib

ul
ar

is
G

C
F

_0
00

18
82

95
.1

 S
tr

ep
to

co
cc

u
s  

ve
st

i b
ul

ar
is

G
C

F
_0

02
15

98
35

.1
 B

la
ut

ia
_A

 s
p0

02
15

98
35

G
C

F
_0

01
75

40
75

.1
 D

or
ea

 f
ae

ci
s

G
C

F
_0

02
16

10
65

.1
 E

ub
ac

te
riu

m
_E

 s
p0

02
16

10
65

G
C

F
_0

02
16

08
25

.1
 G

C
A

_9
00

06
65

75
 s

p0
02

16
08

25
G

C
F

_9
00

12
01

55
.1

 F
ae

ca
lic

at
en

a 
sp

90
01

20
15

5
G

C
F

_0
02

16
15

25
.1

 S
el

lim
on

a
s 

sp
00

21
61

52
5

G
C

F
_0

00
50

90
25

.1
 S

el
lim

on
a

s 
in

te
st

in
al

is
G

C
A

_0
01

30
48

75
.1

 U
C

5-
1-

2E
3 

sp
00

13
04

87
5

G
C

A
_9

00
06

70
65

.1
 M

ar
se

ill
e-

P
46

83
 s

p9
00

23
28

85
G

C
F

_0
02

15
98

45
.1

 A
na

er
om

as
si

lib
ac

ill
u

s 
sp

00
21

59
84

5
G

C
F

_0
02

16
03

05
.1

 L
aw

so
ni

ba
ct

er
 s

p0
02

16
03

05
G

C
F

_0
02

16
12

15
.1

 F
la

vo
ni

fr
ac

to
r s

p0
02

16
12

15
G

C
F

_0
01

67
51

25
.1

 K
le

bs
ie

lla
 p

ne
um

on
ia

e
S

B
17

79
_b

in
.3

2 
A

kk
e r

m
an

si
a 

m
uc

in
ip

hi
la

S
B

17
81

_b
in

.1
8 

B
ac

te
ro

id
e

s 
eg

ge
rt

hi
i

G
C

A
_0

00
43

10
15

.1
 R

C
9 

sp
00

04
31

01
5

S
B

17
86

_b
in

.2
8 

R
C

9 
sp

00
04

31
01

5 
S

A
92

61
_b

in
.1

7 
R

C
9 

sp
00

04
31

01
5

S
B

17
89

_b
in

.6
 R

C
9 

sp
00

04
31

01
5

S
B

17
77

_b
in

.1
2 

D
es

ul
fo

vi
br

io
 p

ig
er

_A
G

C
A

_0
00

43
73

55
.1

 C
A

G
-4

60
 s

p0
00

43
73

55
S

A
92

59
_b

in
.8

 C
A

G
-3

02
 s

p0
01

91
67

75
G

C
A

_0
00

43
17

95
.1

 C
A

G
-3

02
 s

p0
00

43
17

95
G

C
A

_0
01

91
67

75
.1

 C
A

G
-3

02
 s

p0
01

91
67

75
S

A
92

59
_b

in
.2

 P
hi

l1
 s

p0
01

94
08

55
S

B
17

90
_b

in
.1

6 
C

A
G

-7
4

S
B

17
90

_b
in

.5
 C

A
G

-7
4

G
C

A
_0

00
43

69
35

.1
 B

la
ut

ia
 s

p0
00

43
69

35
G

C
A

_0
00

43
46

35
.1

 C
A

G
-1

10
 s

p0
00

43
46

35
G

C
A

_0
00

43
21

35
.C

A
G

-1
70

 s
p0

00
43

21
35

S
70

98
_b

in
.2

9 
F

23
-B

02
 s

p0
01

91
67

15
S

B
17

90
_b

in
.2

8F
23

-B
02

 s
p0

01
91

67
15

S
A

92
59

_b
in

.6
 A

ng
el

ak
is

el
la

S
B

17
84

_b
in

.3
6 

U
B

A
13

94
 s

p9
00

06
68

45
G

C
A

_9
00

06
68

45
.1

 U
B

A
13

94
 s

p9
00

06
68

45
G

C
A

_0
00

43
43

35
.1

 C
A

G
-4

92
 s

p0
00

43
43

35
G

C
A

_0
01

91
71

75
.1

 5
1-

20
 s

p0
01

91
71

75
G

C
A

_0
00

43
41

35
.1

 C
A

G
-2

67
 s

p0
01

91
71

35

Fig. 3 Correlation of members of the faecal microbiome with lung function. Spearman’s rho calculated between mapping-based read counts per genome
and phenotypic scores. Genomes included are those from Supplementary Data 11, with enrichment in either COPD or healthy samples indicated by the
coloured bar along the top of the heatmap. White stars within heatmap boxes indicate significant results (*p < 0.05; **p < 0.01, Student’s t test (two-sided),
Benjamini–Hochberg adjustment for multiple comparisons. Exact p values are provided in Supplementary Data 34). Genome abundances were centred with
log-ratio transformation prior to analysis. FVC forced vital capacity, FEV forced expiratory volume, WBC white blood cell, RBC red blood cell, MCV mean
corpuscular volume, MCH mean corpuscular haemoglobin, RDW red cell distribution width. COPD: n= 28; healthy: n= 29.
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were not significantly different between COPD and healthy samples
(Supplementary Data 25). Microbial production of N-
acetylcadaverine has been reported in the soil bacterium Cor-
ynebacterium glutamicum46; however, we did not observe any
positive associations between the metabolite and COPD-associated
species (Fig. 5), and only one species, Rothia mucilaginosa_A, is
predicted to carry the N-acetyltransferase required for its produc-
tion (Supplementary Data 26). The second enriched amino acid
metabolite, N-acetyltaurine, can be produced endogenously from
taurine; however, there was no significant difference in taurine
levels between COPD and healthy samples (Supplementary
Data 25). In urine, elevated levels of N-acetyltaurine are used as a
marker of ethanol metabolism47; however, it is unclear what the
biological significance is in faeces. Alcohol consumption was also
significantly lower in COPD patients (Supplementary Data 27). The
capacity to use N-acetyltaurine as a carbon source has been

described in several marine bacteria48 and, while we identified
homologues of an N-acetyltaurine ABC transporter in the majority
of genomes associated with both COPD and healthy samples, only
two, Anaeromassilibacillus sp002159845 and Lachnospiraceae GCA-
900066575 sp002160825, encoded homologues of the amidohy-
drolase required for converting N-acetyltaurine to taurine (Sup-
plementary Data 26). Both amidohydrolase-encoding species
positively correlated with the abundance of N-acetyltaurine,
although they were not the only species displaying this trend
(Fig. 5).

Of the three depleted amino acid metabolites in COPD without
adjusting for medication, N-acetylglutamate, N-acetylproline and
6-oxopiperidine-2-carboxylate, the first two were also signifi-
cantly depleted in the extended linear model (Supplementary
Data 25). N-acetylglutamate is both a human and microbial-
derived metabolite, and may also be ingested49. In humans,

Lipid

Amino acid

Cofactors and vitamins
Xenobiotics

Peptide
Carbohydrate

Nucleotide

Superpathway

Healthy

COPD

P45 N-acetylglutamate

P18 allo-threonine

P2622 linoleoyl-linolenoyl-glycerol (18:2/18:3) [1]
P2620 llinoleoyl-linoleoyl-glycerol (18:2/18:2) [1]*
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N-acetylglutamate functions as a cofactor for carbamoyl phos-
phate synthetase I, the first enzyme in the urea cycle, while in
bacteria, it is the first intermediate in the arginine biosynthetic
pathway50. No other elements of the urea cycle were identified as
significant (Supplementary Data 25). The majority of genomes
enriched in COPD encode N-acetylglutamate synthase, necessary
for the generation of N-acetylglutamate from glutamate, versus
five of the genomes enriched in healthy samples (Supplementary
Data 26). This suggests that the increased abundance of the
metabolite in healthy samples may be a product of endogenous
metabolism or altered dietary intake. The role of the other two
amino acid metabolites enriched in healthy samples is unclear. N-
acetylproline has been associated with the consumption of
processed protein51 and may therefore relate to diet. 6-
oxopiperidine-2-carboxylate is a by-product of penicillin produc-
tion by Penicillium chrysogenum52.

Xenobiotic involvement in the COPD faecal metabolome.
Within the xenobiotic class, metabolites increased in COPD
include the tobacco metabolite cotinine and the respiratory drug
salbutamol (asmol), the usage of which was reported by 70%
(n= 20) of patients (Supplementary Data 2). Both cotinine and
salbutamol remained significant in the extended linear model
(Supplementary Data 25). Depleted xenobiotic metabolites, N-
carbamoylglutamate and harmane, both have potential beneficial
effects in the gut. N-carbamoylglutamate is an analogue of N-
acetylglutamate and has beneficial roles in the animal gut fol-
lowing supplementation, including stimulating arginine synth-
esis53, protection against oxidative stress54 and epithelial cell

proliferation55. However, its source within the human gut is
unknown. The β‐carboline alkaloid harmane is found in plants
and is also a bacterial metabolite56 and may therefore have
multiple origins in the gut. Harmane has antimicrobial proper-
ties57 and may modulate the innate immune system58.

A disease-associated network in COPD. We also undertook
network analysis based on the integration of metabolomics and
metagenomic datasets using species and metabolites identified in
>10 samples, as described above (Fig. 4), to look for associations
between the broader microbiome and COPD-linked metabolites.
Three distinct microbiome/metabolite clusters were defined
(Fig. 6). The first indicated associations between S. para-
sanguinis_B, Ruthenibacterium sp. and Anaeromassilibacillus
sp002159845 and a group of 13 metabolites (Fig. 6a), each iden-
tified as different between COPD and healthy samples in our
multivariate analysis (Fig. 4d). Eight of these were also dis-
criminatory following adjustment for age, sex and BMI; one
enriched and seven depleted in COPD (Supplementary Data 25).
The second and third networks do not contain any nodes enri-
ched in COPD or healthy samples and therefore likely represent
interactions additional to a disease state (Fig. 6b, c). The first
cluster, therefore, represents a shortlist of disease-associated
species and metabolites for future testing in clinical models.

Enrichment of Streptococcaceae family members in the COPD-
associated gut microbiome is replicated in an independent
validation cohort. To validate our microbiome findings,
we undertook metagenomic sequencing of a validation cohort
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Fig. 5 COPD-associated species correlate with metabolites differentiating COPD (n= 28) and healthy (n= 29) individuals. Species and metabolites
included are those identified as significantly differential between COPD and healthy samples, including age, sex and BMI within the relevant models
(Supplementary Data 7 and 21). Enrichment in either group indicated by coloured bars to the left and top of the plot. Significant correlations denoted by
white stars (*p < 0.05; **p < 0.01, Student’s t test (two-sided), Benjamini–Hochberg adjustment for multiple comparisons. Exact p values are provided in
Supplementary Data 35). Higher taxonomy of species (order, family) and super pathway of metabolites are indicated by coloured bars.
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comprising 38 samples, 16 COPD patients and 22 healthy indi-
viduals (Supplementary Data 31). As with the study cohort,
COPD and healthy stool samples could be distinguished based on
bacterial community profiles (p= 0.037, PERMANOVA of
Bray–Curtis distances), with COPD status explaining ~4% of
between-sample variability (compared to 6% in the study cohort).
Of the 210 genomes identified as enriched in either COPD or
healthy samples in the study cohort (Supplementary Data 10), 59
(28%) displayed a similar enrichment trend in the validation
cohort of which 33 (16%) reached significance including six of the
Streptococcus spp. enriched in COPD samples, and RC9 spp.,
CAG-302 spp. and UBA11524 sp000437595 enriched in healthy
samples (Supplementary Data 32). Using a multivariate approach,

11 (37%) of the 30 genomes identified as key differentiators of
COPD and healthy samples in the study cohort were in the top
30 separating the groups in the validation cohort (Fig. 7a, b).
Along with Streptococcus parasanguinis_B, highlighted in the
disease-associated network (Fig. 6), these species included
Eubacterium_E sp002161065, Sellimonas spp., Anaeromassiliba-
cillus sp002159845 and Lawsonibacter sp002160305 that correlated
with lung function in the study cohort (Fig. 3). At the functional
level, six of the eight domains significantly enriched in COPD
samples (Supplementary Data 8–11) followed a similar trend in
the validation cohort, although none significantly so (Supple-
mentary Data 33). This indicates that larger cohorts may be
required to clearly differentiate COPD samples based on gut
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metagenome functional capacity. These data do, however, vali-
date the association of specific members of the gut microbiome
with COPD, providing further impetus for their testing in disease
models.

Discussion
We present the first analysis of the human gut microbiome and
metabolome in COPD to complement previous work focused on
the lung. We reveal that both the faecal microbiome and meta-
bolome of stable COPD patients are significantly different from
that of healthy controls. There was no difference in microbiome
composition between current smokers compared to non-smokers
with COPD, supporting this as a disease-associated phenotype
rather than one driven by the influence of cigarette smoke on the
gut microbiome59. Several elements of the newly described COPD
gut metabolome suggest altered systemic metabolism associated
with the disease, the outcomes of which are detectable in faecal
samples promoting faecal sampling as a means of monitoring
disease. Since changes in metagenomes correlated with disease
features, the processes involved may have the potential to be
therapeutic targets or the outputs used as faecal biomarkers,
although this would need clinical and experimental validation.

We found increased abundance of several Streptococcus species,
including S. parasanguinis_B and S. salivarius in COPD, which
was partially replicated in an independent validation cohort.
Streptococcus enrichment was associated with increased abun-
dance of glucosyltransferase and LPXTG-anchored adhesion
domains, suggesting that adhesive capacity was key to increased
abundance. Streptococci are pioneer colonisers and some of the
first species detected in the oral cavity and gut of infants28.
Increased abundance of Streptococcus in the gut has been
observed in association with smoking60, and several studies of the
lung microbiome of COPD patients have also noted an increased
abundance of the genus13,14. S. parasanguinis_B was also isolated
from the sputum of a COPD patient experiencing an acute
exacerbation (GCF_000963275.1)61. One possible explanation for

the presence of these organisms in both the lung and gut is a
transfer from the oral microbiome. Streptococcus strains exhibit
frequent oral–faecal transmission in healthy adults62, and trans-
mission rates may increase in COPD where microaspiration of
the airways with pharyngeal secretions is exaggerated63. Increased
Streptococcus across distinct mucosal niches in addition to the
non-uniform progression to COPD amongst smokers6, also
supports a potential genetic predisposition associated with this
phenomenon, such as altered mucosal immunity64 or antibody
secretion65, although twin-based analysis suggests environment
rather than genotype as the primary explanatory variable in oral
streptococci abundance66.

While streptococci were associated with COPD status, we
found a limited correlation between Streptococcus species abun-
dance and lung function and no correlation with other disease
metrics. Multiple members of the family Lachnospiraceae were
correlated with reduced lung function. Lachnospiraceae members
have been associated with both healthy67,68 and disease-
associated69,70 gut microbiomes, and a subset of Dorea species
has also been associated with the release of inflammatory cyto-
kines71. Contrasting phenotypic effects within genera highlight
the interspecies variability that complicates microbiome data
interpretation and prevents extrapolation to uncharacterised
species such as those described here. Further work is required to
determine whether the identified species are actively contributing
to the established relationship between airway neutrophilia and
lung function decline in COPD72, or whether they are responding
to altered conditions independently associated with the disease.

Two metabolites reduced in COPD patients are cofactors of
carbamoyl phosphate synthetase I, the first enzyme in the urea
cycle, the native cofactor, N-acetylglutamate and its structural
analogue, N-carbamoylglutamate. N-carbamoylglutamate has
been characterised in the livestock industry due to its capacity to
stimulate arginine synthesis53. Arginine is an important mediator
of gut health73 and also contributes to airway function74. We
found no difference in the concentration of arginine (or other
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GCF_002161065.1; Lachnospiraceae; Eubacterium_E sp002161065
GCF_000010145.1; Lactobacillaceae; Lactobacillus_H fermentum
GCA_900066675.1; Erysipelotrichaceae; Absiella sp000163515
GCF_001813525.1; Streptococcaceae; Streptococcus parasanguinis_B
GCF_002156605.1; Lactobacillaceae; Lactobacillus_H reuteri
GCF_000262145.1; Streptococcaceae; Streptococcus parasanguinis
GCF_000164675.2; Streptococcaceae; Streptococcus parasanguinis
GCF_900106845.1; Peptostreptococcaceae; Romboutsia timonensis
GCF_002159935.1; Eggerthellaceae; Rubneribacter badeniensis
GCF_002159845.1; Acutalibacteraceae; Anaeromassilibacillus sp002159845
GCF_900048895.1; Acutalibacteraceae; Acutalibacter timonensis
GCF_002073435.1; Streptococcaceae; Streptococcus gordonii
GCF_000152245.2; Eubacteriaceae; Eubacterium callanderi
GCF_900155395.1; Erysipelotrichaceae; Merdibacter massiliensis
SA9262_bin.33; CAG−74; UBA11524 sp000437595
SA9256_bin.3; Lachnospiraceae; CAG−45 sp900066395
SB1784_bin.7; CAG−74; UBA11524 sp000437595
GCF_900169975.1; Oscillospiraceae; Marseille−P3106 sp900169975
GCF_001809565.1; Micrococcaceae; Rothia mucilaginosa_A
GCA_900066835.1; Oscillospiraceae; Pseudoflavonifractor capillosus
S7106_bin.15; Lachnospiraceae; Faecalicatena torques
GCF_002160305.1; Oscillospiraceae; Lawsonibacter sp002160305
GCF_002128585.1; Lactobacillaceae; Lactobacillus_H reuteri
GCF_001552775.1; Porphyromonadaceae; Porphyromonas sp001552775
GCF_002161525.1; Lachnospiraceae; Sellimonas sp002161525
GCF_000017005.1; Streptococcaceae; Streptococcus gordonii
GCF_001059235.1; Actinomycetaceae; Pauljensenia sp000411415

−0.1 0.0 0.1 0.2 0.3 0.4 0.5
Healthy

COPD

−5.0 −2.5 0.0 2.5 5.0

−7.5

−5.0

−2.5

0.0

2.5

X−variate 1 [9%]

X
−

va
ria

te
 2

 [4
%

]

Healthy
COPD

*
*
*
*
*
*
*
*

*

*

*

#

#

#

#

#

^

^

Loading

a b

Fig. 7 Association of gut microbiome members with COPD replicate in an independent cohort. a Multivariate sparse partial least-squares discriminant
analysis (sPLS-DA) of read-mapping-based relative abundance at the genome level of the faecal microbiome, filtered for genomes with minimum 0.05%
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urea cycle intermediates) between COPD and healthy individuals.
However, analysis of BALF from patients identified a negative
association between several amino acids, including arginine and
lung function75, suggesting that there may be a systemic effect of
reduced cofactor levels that does not appear in the faeces. N-
carbamoylglutamate has also been associated with omega-3 fatty
acid intake in humans, and a possible link between bacterial
production of N-carbamoylglutamate and fatty acids has been
suggested76; however, it is currently unknown which bacteria may
be producing the compound.

We also observed reduced levels of dicarboxylic acids in COPD
patients, potentially driven by increased statin use within the
cohort. These metabolites are generated endogenously via the
omega-oxidation of fatty acids and are excreted in the urine, with
increased levels associated with a number of diseases77. Two of
the dicarboxylic acids identified as depleted, suberate (C8) and
sebacate (C10), along with azelate (C9), were identified as posi-
tively associated with FEV based on serum analysis, however,
were not significantly associated with a diagnosis of COPD78.
Statin use was not reported in that study. Impaired fatty acid
metabolism has been indicated in COPD based on reduced fatty
acid oxidation by isolated peripheral blood mononuclear cells
from patients compared to those from healthy smokers79.
Reduced levels of β-oxidation in female, but not male, COPD
patients are also suggested based on serum analysis80. A shift in
lipid metabolism may therefore still be associated with COPD;
however, it may require a larger cohort to tease apart from the
influence of medication. A decrease in dicarboxylic acids has also
been observed in association with inflammatory bowel
disease81,82; however, it is possible that medication profiles also
affect these outcomes.

Interestingly, we observed a lower dietary fibre intake in par-
ticipants with COPD compared to controls based on dietary
surveys, which may contribute to both differences in gut micro-
biome profile and COPD pathology. Dietary fibre resists digestion
in the small intestine and upon reaching the colon, soluble forms
are partially fermented by commensal bacteria. Some soluble
fibres act as prebiotics, providing a selective growth substrate,
leading to changes in bacterial number and diversity and
increased production of immunosuppressive by-products21,
which have been shown to reduce airway inflammation in both
animal83 and humans84,85 models of asthma. Hence, increasing
fibre intake in COPD may be a relevant therapeutic strategy, as
previously suggested26.

Analysis and integration of omic datasets are challenging due
to the many variables that can influence associations, resulting in
a suboptimal rate of validation in the laboratory82. Here we
attempt to confirm observed microbe–metabolite associations
using the encoded genetic potential of the species in question,
focusing on species and compounds identified as distinct between
COPD and healthy samples. Although we observed overlap in
genetic potential, we did not find a clear connection between the
datasets. While this may be due to the action of external factors,
notably medication, it is also possible that the species responsible
for the metabolite signature are not differentially abundant
between groups. Rather, differential activity levels, triggered by
disease-specific environmental variables and uncaptured by
inferred metabolic potential, may induce the signature. To assess
this, complementary meta-transcriptomic or proteomic analyses
of the microbiome are needed and may yield improved integra-
tion of microbial and metabolomic datasets.

Recognised variation in gut microbiome profiles between
individuals and confounders such as medication status likely
limited our ability to detect additional significant taxonomic and
functional biomarkers for COPD. However, encouragingly there
was a significant overlap between our relatively small study and

validation cohorts. Analysis of larger COPD cohorts will likely
identify additional significant correlated biomarkers. Our study
was also limited to steady-state disease and therefore did not
capture the gut environment during disease exacerbation. Long-
itudinal analysis during exacerbation and recovery would be
particularly interesting if paired with a similar sampling of the
lung environment to evaluate potential seeding from the gut. A
design incorporating such repeated sampling of the same indi-
vidual would also help overcome the problem of inter-individual
variation.

Despite these limitations, a discriminatory signal is present in
both the metagenomic and metabolomic datasets supporting
the gut as a potential source of disease biomarkers in COPD.
These candidates should be further evaluated for their mechan-
istic and causal involvement in COPD using established animal
models7,86,87.

Methods
Patient characteristics. Twenty-eight COPD patients and 29 healthy controls
were recruited from John Hunter Hospital, Belmont District Hospital, Newcastle
Community Health Centre, Westlakes Community Health centre and Hunter
Medical Research Institute (Newcastle, Australia). All participants provided written
informed consent, and ethics approval was obtained from the Human Ethics
Research Committees of the Hunter New England Local Health District (14/08/20/
3.02) and the University of Newcastle (H-2015-0006). COPD was defined by the
GOLD standard of post-bronchodilator FEV1 < 80% predicted and FEV1/FVC <
0.7, and by physician diagnosis; all were >40 years old and had a previous history of
smoking. Healthy controls were adults >40 years old with no history of cardiac or
respiratory disease, and with normal lung function measured by spirometry (FEV1/
FVC ratio >0.7 and FEV1 > 80% predicted). Participants were excluded if they had
received treatment with an antibiotic or oral prednisone, experienced significant
abdominal pain, bloating, diarrhoea or respiratory tract infection in the previous
4 weeks, or had a previous history of gastrointestinal disease. Current and ex-
smokers were not excluded.

For the validation cohort, 16 COPD patients and 22 healthy participants were
recruited through the thoracic outpatient clinic at The Prince Charles Hospital and
the general population, respectively. All participants provided written informed
consent, and ethics approval was obtained from The Prince Charles Hospital
Human Research Ethics Committee (HREC/18/QPCH/234) and the University of
Queensland (2108001673/HREC/18/QPCH/234). Patients were included in the
study if they had COPD as defined by the GOLD guidelines (chronic airflow
limitation that is not fully reversible, with post-bronchodilator FEV1/FVC < 70%
and FEV1 < 80% predicted). COPD patients were former smokers of ≥10 years,
who are recruited during stability (>4 weeks since an exacerbation). Healthy
controls were adults >40 years old with no history of cardiac or respiratory disease.
Participants were excluded from the study due to any antibiotic or oral
corticosteroid use in the past 4 weeks, a current smoker, had comorbid lung disease
(e.g. asthma, lung cancer, interstitial lung disease and bronchiectasis) that interferes
with the study outcomes, had other co-morbidities with established altered
microbiome (including IBD, irritable bowel syndrome), or extreme dietary habits
that may significantly impact gut microbiome composition.

Statistical comparison of metadata characteristics between COPD and healthy
groups (Supplementary Data 1 and 27) was undertaken in R using either Student’s t
test (two-sided) or Wilcoxon rank-sum test dependent on normality estimation
using Shapiro–Wilk test. Pearson’s chi-squared test was used for categorical
variables. Comparison of dietary questionnaire responses was undertaken using a
Wilcoxon rank-sum test with Benjamini–Hochberg adjustment for multiple
comparisons.

Specimen collection. Individuals who consented to participate were first screened
via phone interview, and suitable candidates attended the Hunter Medical Research
Institute for a formal assessment. Individual history was recorded, including
symptoms, medical and medication history, smoking history and completion of a
Dietary Questionnaire for Epidemiological Studies (Version 2, Cancer Council
Victoria, Australia). For COPD patients, a history of exacerbations in the last
12 months was also recorded and health status measured using the COPD
assessment tool. Spirometry (Easyone) was performed post bronchodilator to
assess airway obstruction and a plasma sample collected and stored at −80 °C.
Participants were supplied with a faecal collection kit and instructed to collect
faeces within 48 h of their visit. Faecal samples were stored in the participants’
freezer until returned frozen for analysis. Samples were stored at −80 °C until
processed.

DNA extraction and sequencing. DNA was extracted from ~100 mg of faecal
material using an initial bead-beating step followed by extraction using a Maxwell
16 Research Instrument (Promega, USA) according to the manufacturer’s protocol
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with the Maxwell 16 Tissue DNA Kit (Promega, USA). DNA concentration was
measured using a Qubit assay (Life Technologies, USA) and was adjusted to a
concentration of 5 ng/µl. The 16S rRNA gene encompassing the V6–V8 regions
were targeted using the 803 F (5′-TTAGAKACCCBNGTAGTC-3′) and 1392 R
(5′-ACGGGCGGTGWGTRC-3′) primers modified to contain Illumina specific
adaptor sequences (803F:5′TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG
TTAGAKACCCBNGTAGTC3′ and 1392wR:5′GTCTCGTGGGCTCGGGTC
TCGTGGGCTCGGAGATGTGTATAAGAGACAGACGGGCGGTGWGTRC3′).
Library preparation was performed as described, using the workflow outlined by
Illumina (#15044223 Rev.B). In the first stage, PCR products of ~590 bp were
amplified according to the specified workflow with an alteration in polymerase
used to substitute Q5 Hot Start High-Fidelity 2X Master Mix (New England
Biolabs, USA) in standard PCR conditions. The resulting PCR amplicons were
purified using Agencourt AMPure XP beads (Beckman Coulter, USA). Purified
DNA was indexed with unique 8-bp barcodes using Illumina Nextera XT
384 sample Index Kits A–D (#FC-131-1002, Illumina, USA). Indexed amplicons
were pooled in equimolar concentrations and sequenced on the MiSeq Sequencing
System (Illumina, USA) using paired-end sequencing with V3 300 bp according to
the manufacturer’s protocol. Metagenomic sequencing was performed using the
same DNA extractions. Library preparation was performed using the Nextera DNA
Library Preparation Kit (Illumina, USA). Libraries were sequenced using the
Illumina NextSeq500 platform generating approximately 2 Gbp of 150-bp paired-
end reads per sample. Metagenomic sequencing of the validation cohort was
undertaken by Microba (Brisbane, Australia) generating approximately 6 Gbp of
150-bp paired-end reads per sample.

16S rRNA gene sequencing analysis. Reads were cleaned of adaptor sequences
using Cutadapt v1.188 and trimmed using Trimmomatic v0.3689 employing a
sliding window of 4 bases with an average base quality above 15, followed by hard
trimming to 250 bases with the exclusion of reads less than this length. Read
statistics are provided in Supplementary Data 28. The remaining forward reads
were processed following the QIIME2 workflow90 using DADA2 v1.1291 to denoise
sequences. Taxonomy assignment was performed on amplicon sequence variants
using BLAST v2.8.192 against the SILVA93 reference database version 132. Read
counts were normalised prior to PCA and heatmap visualisation using log-
transformed cumulative-sum scaling implemented within metagenomeSeq
v1.24.194. PCA was performed using the rda function and PERMANOVA using the
adonis function within the vegan v2.5-5R package95. Heatmaps were generated
using the heatmap v1.0.12R package96. Alpha-diversity was calculated using
QIIME v1.8.090 with raw, unfiltered counts. sPLS-DA analysis was conducted using
the R package mixOmics v6.6.231 using log-transformed cumulative-sum-scaled
values with 10 × 10-fold cross-validation, including sequence variants present at
≥0.05% relative abundance in ≥3 samples.

Metagenomic sequence processing and recovery of MAGs. Contaminating
human reads were identified by mapping against the human genome (Homo_-
sapiens.GRCh38, https://www.ncbi.nlm.nih.gov/assembly/2334371) using BWA
v0.7.1297 requiring a minimum alignment length of 30 bases and maximum of 15
clipped bases for reads to be considered of human origin. Adaptor removal and
read trimming were performed using Trimmomatic v0.3689 with the following
settings: LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:50. Read
statistics are provided in Supplementary Data 29. Each sample was assembled
independently using Spades v3.12.098 with the –meta flag. Reads were mapped to
each resulting assembly using BamM v1.7.3 (https://github.com/ecogenomics/
BamM) and bins produced using Metabat v2.12.199 with a minimum contig length
of 1500 bases. Contamination and completeness of bins from all samples were
assessed using CheckM v1.0.11100. Bins with completeness >80% and contamina-
tion <7% were retained and de-replicated using dRep v2.05101 with default settings
(99% identity), skipping quality filtering. The taxonomic affiliation of recovered
MAGs was determined using the Genome Taxonomy Database (GTDB) Releases
03-RS86 and 04-R89102 using GTDB-Tk v0.3.0103 (Supplementary Data 30).

Metagenomic community profiling. Reads for each sample were mapped to a de-
replicated set of 23,936 genomes from NCBI (GTDB Release 03-RS86)102 using
BamM with minimum seed length of 25. Genomes with >1× coverage or >1% of
the genome, as determined using Mosdepth v0.2.3104, were retained (n= 1229,
Source Data) and combined with study MAGs for assessment of community
composition. dRep101 was used to identify overlap (99% identity) between study
MAGs and NCBI genomes, where overlap occurred, MAG was retained. Read
counts for the final genome set were determined for each sample via mapping using
BamM with minimum seed length of 25 bases and subsequent filtering for mini-
mum mapping percentage identity of 95%. Per-genome read counts were scaled to
account for genome size whilst maintaining the raw unmapped read percentage for
each sample as a reflection of unrepresented diversity. Relative abundance was
calculated using scaled read counts as a fraction of total non-host reads per sample.
Alpha-diversity was calculated using QIIME v1.8.090 with counts normalised using
the size-factor method implemented within the R package DESeq2 v1.22.230.

PCA was conducted using the R package vegan v2.5-195 on data normalised
using log-cumulative-sum scaling (log-CSS) implemented within metagenomeSeq

v1.22.094. Differential abundance of bacterial taxa between groups was assessed
using the Wald test within DESeq2 v1.20.030 based on read counts scaled to
account for genome size with the Benjamini–Hochberg adjustment for multiple
comparisons. The genome-level analysis was conducted using genomes present
with at least 0.05% relative abundance in one sample. sPLS-DA analysis was
conducted using the R package mixOmics v6.6.231 using centred log-ratio-
transformed relative abundance with 50 × 15-fold cross-validation. Correlation
analysis between metagenomic and phenotypic data was undertaken using
genomes identified as significantly different between COPD and healthy samples
following removal of patient confounders (Supplementary Data 11). Spearman’s
rho was calculated using ‘corr.test’ function within R package psych v1.8.12105

based on centred log-ratio-transformed genome relative abundance. A correlation
matrix was produced using ‘corrplot’ function with R package corrplot v0.84106.

Metagenomic functional profiling. For read-based analysis, protein fragments in
raw reads were predicted using Prodigal v2.6.3107 and subsequently alignment with
HMMER v3.1b2108 to the hidden Markov model databases dbCAN CAZy v6109,
Pfam r31110 and TIGRFAM v15111 with a maximum e-value cut-off of 1e−10.
KEGG orthology was determined via BLAST v2.8.192 alignment to UniProt Uni-
Ref100 database downloaded on July 2017112 with maximum e value of 1e−10 and
subsequent extraction of associated KO terms. Counts per sample were used to
compare group functional profiles with DESeq2 v1.20.030 following removal of
domains with total read counts ≤10% of the average read count across all domains.
Genome-level analysis of KEGG orthology terms and module completeness was
undertaken using EnrichM v0.5.0 (https://github.com/geronimp/enrichM) with
maximum e value of 1e−10 and Fisher’s exact test with Benjamini–Hochberg
adjustment used to assess significance. Comparison of module completeness was
undertaken in R using the Wilcoxon rank-sum test with Benjamini–Hochberg
adjustment. The presence of genes of interest (i.e. related to an enriched meta-
bolite) in enriched genomes was determined using BLAST with minimum e value
1e−10, identity 30% and alignment length 70%. Protein sequences used as queries
are included in Supplementary Data 26.

Metabolite extraction, profiling and analysis. Metabolites were profiled in faecal
samples by Metabolon Inc. (Durham, NC, USA). All samples were maintained at
−80 °C until processed as previously described113. Global metabolic profiles were
determined using the Metabolon HD4 platform. Samples were prepared using the
automated MicroLab STAR® system (Hamilton Company, USA), with several
recovery standards added prior to extraction and processing for quality control. To
recover chemically diverse metabolites and precipitate protein and dissociate small
molecules bound to protein in the precipitated matrix, samples were extracted with
methanol with vigorous shaking for 2 min (Glen Mills GenoGrinder 2000, USA)
followed by centrifugation. The extract was divided into five different fractions for
further analysis. The organic solvent was removed by placing briefly on a Tur-
boVap® Concentration Evaporator (Zymark). Samples were stored overnight under
nitrogen.

The process of ultra performance liquid chromatography (UPLC)/mass
spectrometry (MS)/MS was performed with a Waters ACQUITY (UPLC), Thermo
Scientific Q-Exactive high-resolution mass spectrometer interfaced with a heated
electrospray ionisation (HESI-II) source and Orbitrap mass analyser operated at
35,000 mass resolution. Sample extracts were processed dry and reconstituted to
consist of a series of standards at fixed concentrations to have injection and
chromatography consistency before detailed analysis with four methods. For more
hydrophilic compounds, optimised reverse-phase UPLC–MS/MS with acidic
conditions and positive ion-mode electrospray ionisation was used. Here, a C18
column (Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm), consisting of
perfluoropentanoic acid (0.05%) and formic acid (0.1%) was used to gradient-elute
the extract using water and methanol. For hydrophobic compounds, extracts were
gradient-eluted with the same C18 column using methanol, acetonitrile, water,
perfluoropentanoic acid (0.05%) and formic acid (0.01%). Higher organic content
was maintained during processing. Basic negative-ion conditions using a separate
C18 column were used to elute the basic extract with methanol and water,
ammonium bicarbonate (6.5 mM, pH 8). Negative-ion-mode electrospray
ionisation conditions with hydrophilic interaction chromatography were used with
a Waters UPLC BEH Amide 2.1 × 150-mm, 1.7-µm column. Here, extracts were
gradient-eluted with water and acetonitrile with ammonium formate (10 mM, pH
10.8). The mass spectrometry analysis alternated between MS and data-dependent
MSn scans, with scan range covering from (70 to 1000 m/z) achieved with the
dynamic elusion method114.

Metabolon’s hardware and software systems were based on LAN backbone;
database servers operating on Oracle 10.2.0.1 Enterprise Edition, are utilised to
extract, peak-identify and quality-check and process the raw data files. Compound
identification is achieved by comparison with library entries of purified standards
(or recurrent unknown entities), which consist of retention time/index, the mass-
to-charge ratio (m/z) and chromatographic data, including MS/MS spectral data
information. Biochemical identification follows the retention time/index window of
the proposed identification mass match to the library (±10 ppm) and MS/MS
forward and reverse scores. Quality check and curation procedures are followed to
ensure that library matches for each compound from each sample are correct.
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Peaks are quantified using area-under-the-curve detector ion counts and corrected
across multiple runs by adjusting the median value of each compound to 1.

Following median scaling, then imputation of missing values, if any, with the
minimum observed value for each compound, the data were transformed to the
natural log for statistical analysis. Linear regression of metabolite data was
performed using lm package in R implemented within NormalizeMets115 v0.25115

incorporating sample group, age, BMI and sex and non-COPD medications within
the model matrix as indicated.

Metabolomic and metagenomic data integration. Correlation analysis between
metagenomic and metabolomic data was undertaken using genomes and meta-
bolites identified as significantly different between COPD and healthy samples
incorporating adjustment for age, sex and BMI (Supplementary Data 7 and 21).
Spearman’s rho was calculated using ‘corr.test’ function within R package psych
v1.8.12105 based on centred log-ratio- transformed genome relative abundance and
log-transformed raw metabolite values. The pseudo count used for each dataset was
one order of magnitude below the lowest non-zero value. The correlation matrix
was produced using ‘corrplot’ function with R package corrplot v0.84106.

DIABLO from the R package mixOmics v6.6.231 was used to generate
integrated metagenomic and metabolomic signature. The analysis was performed
using centred log-ratio-transformed taxa relative abundance (with a pseudo count
of 1e−08, one order of magnitude below the lowest non-zero value) and log-
transformed median-scaled metabolite data. Taxa were filtered for those present at
a minimum of 0.05% in at least ten samples (genome level) and metabolites for
those detected in at least 10 samples. The block link within the design matrix was
set at 0.1. The optimum number of components and variables included within the
final model was determined using the ‘tune.block.splsda’ function with 50 × 10-fold
cross-validation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The 16S rRNA amplicon and metagenomic sequencing data have been deposited to the
NCBI Sequence Read Archive under accession PRJNA562766. Recovered MAGs have
been deposited to the NCBI DDBJ/ENA/GenBank database under accessions
WGSA00000000–WHIU00000000. Prokka annotated MAG sequences in GenBank
format are available at https://github.com/katebowerman/COPD. Sample accessions are
provided in Supplementary Data 28–30. Sequence variant read counts from 16S rRNA
amplicon sequencing (raw data underlying Fig. 1) and metagenomic genome-based
mapping counts (raw data underlying Figs. 2–7) are provided as a Source Data File. The
reference human genome used in this study (Homo_sapiens.GRCh38) is available at
https://www.ncbi.nlm.nih.gov/assembly/2334371. Reference bacterial genomes are
available from https://www.ncbi.nlm.nih.gov/assembly/. Additional databases used in
this study are available as follows: SILVA v132, GTDB 03-RS86 and 04-R89, dbCAN v6,
Pfam r31, TIGRFAM v15 and UniProt UniRef100. Source data are provided with
this paper.
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