73 research outputs found

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: Β© 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    Psychiatric inpatient expenditures and public health insurance programmes: analysis of a national database covering the entire South Korean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medical spending on psychiatric hospitalization has been reported to impose a tremendous socio-economic burden on many developed countries with public health insurance programmes. However, there has been no in-depth study of the factors affecting psychiatric inpatient medical expenditures and differentiated these factors across different types of public health insurance programmes. In view of this, this study attempted to explore factors affecting medical expenditures for psychiatric inpatients between two public health insurance programmes covering the entire South Korean population: National Health Insurance (NHI) and National Medical Care Aid (AID).</p> <p>Methods</p> <p>This retrospective, cross-sectional study used a nationwide, population-based reimbursement claims dataset consisting of 1,131,346 claims of all 160,465 citizens institutionalized due to psychiatric diagnosis between January 2005 and June 2006 in South Korea. To adjust for possible correlation of patients characteristics within the same medical institution and a non-linearity structure, a Box-Cox transformed, multilevel regression analysis was performed.</p> <p>Results</p> <p>Compared with inpatients 19 years old or younger, the medical expenditures of inpatients between 50 and 64 years old were 10% higher among NHI beneficiaries but 40% higher among AID beneficiaries. Males showed higher medical expenditures than did females. Expenditures on inpatients with schizophrenia as compared to expenditures on those with neurotic disorders were 120% higher among NHI beneficiaries but 83% higher among AID beneficiaries. Expenditures on inpatients of psychiatric hospitals were greater on average than expenditures on inpatients of general hospitals. Among AID beneficiaries, institutions owned by private groups treated inpatients with 32% higher costs than did government institutions. Among NHI beneficiaries, inpatients medical expenditures were positively associated with the proportion of patients diagnosed into dementia or schizophrenia categories. However, for AID beneficiaries, inpatient medical expenditures were positively associated with the proportion of all patients with a psychiatric diagnosis that were AID beneficiaries in a medical institution.</p> <p>Conclusions</p> <p>This study provides evidence that patient and institutional factors are associated with psychiatric inpatient medical expenditures, and that they may have different effects for beneficiaries of different public health insurance programmes. Policy efforts to reduce psychiatric inpatient medical expenditures should be made differently across the different types of public health insurance programmes.</p

    Identification of novel neuroendocrine-specific tumour genes

    Get PDF
    Neuroendocrine tumours (NETs) comprise a heterogenous group of malignancies with an often unpredictable course, and with limited treatment options. Thus, new diagnostic, prognostic, and therapeutic markers are needed. To shed new lights into the biology of NETs, we have by cDNA transcript profiling, sought to identify genes that are either up- or downregulated in NE as compared with non-NE tumour cells. A panel of six NET and four non-NET cell lines were examined, and out of 12 743 genes examined, we studied in detail the 200 most significantly differentially expressed genes in the comparison. In addition to potential new diagnostic markers (NEFM, CLDN4, PEROX2), the results point to genes that may be involved in the tumorigenesis (BEX1, TMEPAI, FOSL1, RAB32), and in the processes of invasion, progression and metastasis (MME, STAT3, DCBLD2) of NETs. Verification by real time qRT–PCR showed a high degree of consistency to the microarray results. Furthermore, the protein expression of some of the genes were examined. The results of our study has opened a window to new areas of research, by uncovering new candidate genes and proteins to be further investigated in the search for new prognostic, predictive, and therapeutic markers in NETs

    Is Promiscuity Associated with Enhanced Selection on MHC-DQΞ± in Mice (genus Peromyscus)?

    Get PDF
    Reproductive behavior may play an important role in shaping selection on Major Histocompatibility Complex (MHC) genes. For example, the number of sexual partners that an individual has may affect exposure to sexually transmitted pathogens, with more partners leading to greater exposure and, hence, potentially greater selection for variation at MHC loci. To explore this hypothesis, we examined the strength of selection on exon 2 of the MHC-DQΞ± locus in two species of Peromyscus. While the California mouse (P. californicus) is characterized by lifetime social and genetic monogamy, the deer mouse (P. maniculatus) is socially and genetically promiscuous; consistent with these differences in mating behavior, the diversity of bacteria present within the reproductive tracts of females is significantly greater for P. maniculatus. To test the prediction that more reproductive partners and exposure to a greater range of sexually transmitted pathogens are associated with enhanced diversifying selection on genes responsible for immune function, we compared patterns and levels of diversity at the Class II MHC-DQΞ± locus in sympatric populations of P. maniculatus and P. californicus. Using likelihood based analyses, we show that selection is enhanced in the promiscuous P. maniculatus. This study is the first to compare the strength of selection in wild sympatric rodents with known differences in pathogen milieu

    Using human artificial chromosomes to study centromere assembly and function

    Get PDF

    The Immunomodulatory Role of Adjuvants in Vaccines Formulated with the Recombinant Antigens Ov-103 and Ov-RAL-2 against Onchocerca volvulus in Mice.

    Get PDF
    BACKGROUND: In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses. METHODOLOGY/ PRINCIPAL FINDINGS: Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen-specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2. CONCLUSIONS/SIGNIFICANCE: The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans

    Neural Circuits Underlying Rodent Sociality: A Comparative Approach

    Get PDF
    All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual’s life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species

    Canine cancer immunotherapy studies: linking mouse and human

    Full text link
    Despite recent major clinical breakthroughs in human cancer immunotherapy including the use of checkpoint inhibitors and engineered T cells, important challenges remain, including determining the sub-populations of patients who will respond and who will experience at times significant toxicities. Although advances in cancer immunotherapy depend on preclinical testing, the majority of in-vivo testing currently relies on genetically identical inbred mouse models which, while offering critical insights regarding efficacy and mechanism of action, also vastly underrepresent the heterogeneity and complex interplay of human immune cells and cancers. Additionally, laboratory mice uncommonly develop spontaneous tumors, are housed under specific-pathogen free conditions which markedly impacts immune development, and incompletely model key aspects of the tumor/immune microenvironment. The canine model represents a powerful tool in cancer immunotherapy research as an important link between murine models and human clinical studies. Dogs represent an attractive outbred combination of companion animals that experience spontaneous cancer development in the setting of an intact immune system. This allows for study of complex immune interactions during the course of treatment while also directly addressing long-term efficacy and toxicity of cancer immunotherapies. However, immune dissection requires access to robust and validated immune assays and reagents as well as appropriate numbers for statistical evaluation. Canine studies will need further optimization of these important mechanistic tools for this model to fulfill its promise as a model for immunotherapy. This review aims to discuss the canine model in the context of existing preclinical cancer immunotherapy models to evaluate both its advantages and limitations, as well as highlighting its growth as a powerful tool in the burgeoning field of both human and veterinary immunotherapy
    • …
    corecore