33 research outputs found

    Cosmic-Ray Positrons: Are There Primary Sources?

    Get PDF
    Cosmic rays at the Earth include a secondary component originating in collisions of primary particles with the diffuse interstellar gas. The secondary cosmic rays are relatively rare but carry important information on the Galactic propagation of the primary particles. The secondary component includes a small fraction of antimatter particles, positrons and antiprotons. In addition, positrons and antiprotons may also come from unusual sources and possibly provide insight into new physics. For instance, the annihilation of heavy supersymmetric dark matter particles within the Galactic halo could lead to positrons or antiprotons with distinctive energy signatures. With the High-Energy Antimatter Telescope (HEAT) balloon-borne instrument, we have measured the abundances of positrons and electrons at energies between 1 and 50 GeV. The data suggest that indeed a small additional antimatter component may be present that cannot be explained by a purely secondary production mechanism. Here we describe the signature of the effect and discuss its possible origin.Comment: 15 pages, Latex, epsfig and aasms4 macros required, to appear in Astroparticle Physics (1999

    It's getting hot in here – Microcontextual study of a potential pit hearth at the Middle Paleolithic site of El Salt, Spain

    Get PDF
    By studying combustion structures, which conceal information about anthropogenic activity, we might learn about their makers. This is especially important for remote time periods like the Middle Paleolithic, whose archaeological record comprises numerous combustion structures. The majority of these are simple, flat, open hearths, although a small number of features situated in pit-like depressions have been recorded. Given that hearths built on a flat surface can result in pit-like color alteration of the underlying sediment, accurate identification of pit hearths is a crucial step prior to behavioral interpretation. Here we present a comprehensive study of a possible pit hearth from the Middle Paleolithic site of El Salt, Spain, using a microcontextual approach combining micromorphology, lipid biomarker analysis, archaeomagnetism and zooarchaeology. This pit hearth involves a true depression containing a thick plant ash deposit. It reached very high temperatures, possibly multiple burning events and long combustion times. Morphologically distinct combustion structures in a single archaeological context may indicate different functions and thus a diverse fire technology, pointing to Neanderthal behavioral variability.ERC Consolidator Grant project PALEOCHAR – 648871 https://erc.europa.eu/funding/consolidator-grants, I + D Project HAR2008-06117/HIST, HAR2015-68321-P (MINECO-FEDER/UE), and the Cultural Heritage Department of the Valencia Government and the Archaeological Museum Camil Visedo of Alcoy, under the direction of Professor Bertila Galván of Universidad de La Laguna, Junta de Castilla y León (project BU235P18), the European Fund for Economic and Regional Development (EFRD) and the project PID2019-105796 GB-I00 of the Agencia Estatal de Investigación (AEI/10.13039/501100011033

    Influence of handaxe size and shape on cutting efficiency: a large-scale experiment and morphometric analysis

    Get PDF
    Handaxes represent one of the most temporally enduring and geographically widespread of Palaeolithic artifacts and thus comprised a key technological strategy of many hominin populations. Archaeologically observable variation in the size (i.e., mass) and shape properties of handaxes has been frequently noted. It is logical to ask whether some of this variability may have had functional implications. Here, we report the results of a large-scale (n = 500 handaxes) experiment designed to examine the influence of variation in handaxe size and shape on cutting efficiency rates during a laboratory task. We used a comprehensive dataset of morphometric (size-adjusted) shape variables and statistical methods (including multivariate methods) to address this issue. Our first set of analyses focused on handaxe mass/size variability. This analysis demonstrated that, at a broad-scale level of variation, handaxe mass may have been free to vary independently of functional (cutting) efficiency. Our analysis also, however, identified that there will be a task-specific threshold in terms of functional effectiveness at the lower end of handaxe mass variation. This implies that hominins may have targeted design forms to meet minimal (task-specific) thresholds, and may also have managed handaxe reduction and discard in respect to such factors. Our second set of analyses focused on handaxe shape variability. This analysis also indicated that considerable variation in handaxe shape may occur independently of any strong effect on cutting efficiency. We discuss how these results have several implications for considerations of handaxe variation in the archaeological record. At a general level, our results demonstrate that variability within and between handaxe assemblages in terms of their size and shape properties will not necessarily have had immediate or strong impact on their effectiveness when used for cutting, and that such variability may have been related to factors other than functional issues
    corecore