80 research outputs found

    A Role for Drosophila dFoxO and dFoxO 5′UTR Internal Ribosomal Entry Sites during Fasting

    Get PDF
    One way animals may cope with nutrient deprivation is to broadly repress translation by inhibiting 5′-cap initiation. However, under these conditions specific proteins remain essential to survival during fasting. Such peptides may be translated through initiation at 5′UTR Internal Ribosome Entry Sites (IRES). Here we show that the Drosophila melanogaster Forkhead box type O (dFoxO) transcription factor is required for adult survival during fasting, and that the 5′UTR of dfoxO has the ability to initiate IRES-mediated translation in cell culture. Previous work has shown that insulin negatively regulates dFoxO through AKT-mediated phosphorylation while dFoxO itself induces transcription of the insulin receptor dInR, which also harbors IRES. Here we report that IRES-mediated translation of both dFoxO and dInR is activated in fasted Drosophila S2 cells at a time when cap-dependent translation is reduced. IRES mediated translation of dFoxO and dInR may be essential to ensure function and sensitivity of the insulin signaling pathway during fasting

    Infusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets

    Get PDF
    The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H(2)O(2)) generation in the resuscitation of hypoxic newborn animals with severe acidosis.Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocapnic alveolar hypoxia followed by 4 h room-air reoxygenation, n = 8/group). At 10 min after reoxygenation, piglets were given either i.v. SB (2 mEq/kg), or saline (hypoxia-reoxygenation controls) in a blinded, randomized fashion. Hemodynamic data and blood gas were collected at specific time points and cerebral cortical H(2)O(2) production was continuously monitored throughout experimental period. Plasma superoxide dismutase and catalase and brain tissue glutathione, superoxide dismutase, catalase, nitrotyrosine and lactate levels were assayed.Two hours of normocapnic alveolar hypoxia caused cardiogenic shock with metabolic acidosis (PH: 6.99 ± 0.07, HCO(3)(-): 8.5 ± 1.6 mmol/L). Upon resuscitation, systemic hemodynamics immediately recovered and then gradually deteriorated with normalization of acid-base imbalance over 4 h of reoxygenation. SB administration significantly enhanced the recovery of both pH and HCO(3-) recovery within the first hour of reoxygenation but did not cause any significant effect in the acid-base at 4 h of reoxygenation and the temporal hemodynamic changes. SB administration significantly suppressed the increase in H(2)O(2) accumulation in the brain with inhibition of superoxide dismutase, but not catalase, activity during hypoxia-reoxygenation as compared to those of saline-treated controls.Despite enhancing the normalization of acid-base imbalance, SB administration during resuscitation did not provide any beneficial effects on hemodynamic recovery in asphyxiated newborn piglets. SB treatment also reduced the H(2)O(2) accumulation in the cerebral cortex without significant effects on oxidative stress markers presumably by suppressing superoxide dismutase but not catalase activity

    Critical Role of PI3K/Akt/GSK3β in Motoneuron Specification from Human Neural Stem Cells in Response to FGF2 and EGF

    Get PDF
    Fibroblast growth factor (FGF) and epidermal growth factor (EGF) are critical for the development of the nervous system. We previously discovered that FGF2 and EGF had opposite effects on motor neuron differentiation from human fetal neural stem cells (hNSCs), but the underlying mechanisms remain unclear. Here, we show that FGF2 and EGF differentially affect the temporal patterns of Akt and glycogen synthase kinase 3 beta (GSK3β) activation. High levels of phosphatidylinositol 3-kinase (PI3K)/Akt activation accompanied with GSK3β inactivation result in reduction of the motor neuron transcription factor HB9. Inhibition of PI3K/Akt by chemical inhibitors or RNA interference or overexpression of a constitutively active form of GSK3β enhances HB9 expression. Consequently, PI3K inhibition increases hNSCs differentiation into HB9+/microtubule-associated protein 2 (MAP2)+ motor neurons in vitro. More importantly, blocking PI3K not only enhances motor neuron differentiation from hNSCs grafted into the ventral horn of adult rat spinal cords, but also permits ectopic generation of motor neurons in the dorsal horn by overriding environmental influences. Our data suggest that FGF2 and EGF affect the motor neuron fate decision in hNSCs differently through a fine tuning of the PI3K/AKT/GSK3β pathway, and that manipulation of this pathway can enhance motor neuron generation

    In Macrophages, Caspase-1 Activation by SopE and the Type III Secretion System-1 of S. Typhimurium Can Proceed in the Absence of Flagellin

    Get PDF
    The innate immune system is of vital importance for protection against infectious pathogens. Inflammasome mediated caspase-1 activation and subsequent release of pro-inflammatory cytokines like IL-1β and IL-18 is an important arm of the innate immune system. Salmonella enterica subspecies 1 serovar Typhimurium (S. Typhimurium, SL1344) is an enteropathogenic bacterium causing diarrheal diseases. Different reports have shown that in macrophages, S. Typhimurium may activate caspase-1 by at least three different types of stimuli: flagellin, the type III secretion system 1 (T1) and the T1 effector protein SopE. However, the relative importance and interdependence of the different factors in caspase-1 activation is still a matter of debate. Here, we have analyzed their relative contributions to caspase-1 activation in LPS-pretreated RAW264.7 macrophages. Using flagellar mutants (fliGHI, flgK) and centrifugation to mediate pathogen-host cell contact, we show that flagellins account for a small part of the caspase-1 activation in RAW264.7 cells. In addition, functional flagella are of key importance for motility and host cell attachment which is a prerequisite for mediating caspase-1 activation via these three stimuli. Using site directed mutants lacking several T1 effector proteins and flagellin expression, we found that SopE elicits caspase-1 activation even when flagellins are absent. In contrast, disruption of essential genes of the T1 protein injection system (invG, sipB) completely abolished caspase-1 activation. However, a robust level of caspase-1 activation is retained by the T1 system (or unidentified T1 effectors) in the absence of flagellin and SopE. T1-mediated inflammasome activation is in line with recent work by others and suggests that the T1 system itself may represent the basic caspase-1 activating stimulus in RAW264.7 macrophages which is further enhanced independently by SopE and/or flagellin

    Amyloids - A functional coat for microorganisms

    Get PDF
    Amyloids are filamentous protein structures ~10 nm wide and 0.1–10 µm long that share a structural motif, the cross-β structure. These fibrils are usually associated with degenerative diseases in mammals. However, recent research has shown that these proteins are also expressed on bacterial and fungal cell surfaces. Microbial amyloids are important in mediating mechanical invasion of abiotic and biotic substrates. In animal hosts, evidence indicates that these protein structures also contribute to colonization by activating host proteases that are involved in haemostasis, inflammation and remodelling of the extracellular matrix. Activation of proteases by amyloids is also implicated in modulating blood coagulation, resulting in potentially life-threatening complications.

    The mammals of Angola

    Get PDF
    Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide range of habitats with contrasting environmental conditions, while endemism tends to be associated with unique physiographic settings such as the Angolan Escarpment. The mammal fauna of Angola includes 2 Critically Endangered, 2 Endangered, 11 Vulnerable, and 14 Near-Threatened species at the global scale. There are also 12 data deficient species, most of which are endemics or near endemics to the countryinfo:eu-repo/semantics/publishedVersio

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease
    corecore